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1 Introduction

The impulse response function (IRF) is the most widely used tool for analyzing economic
questions within a structural vector autoregression (VAR) framework. Regardless of the estima-
tion methodology, whether frequentist or Bayesian, practitioners typically construct pointwise
(individual) bands1 around the impulse response coefficients at each horizon separately. How-
ever, most economic questions necessitate simultaneous evaluation across multiple structural
parameters.

For example, a standard monetary structural VAR model could be used to examine whether
the exchange rate overshoots in response to a monetary policy shock (see Eichenbaum and
Evans (1995)). Alternatively, the same model could study the conditional exchange rate pass-
through by computing the ratio between the responses of the price level and the exchange rate
following a monetary policy shock (see Forbes et al. (2018)). While the former question involves
a consideration of cross-horizon relationship in the impulse response of a single variable, the
latter requires inference method that accounts for cross-variable dependence.

This example illustrates why error bands should be viewed as context-specific objects, whose
proper specification requires thorough discussion before any empirical analysis. Lütkepohl et al.
(2015, 2018) have evaluated the empirical properties of frequentist methods for joint inference
in structural VARs using Monte Carlo experiments. These studies are comprehensive, covering
a wide range of methods that have been discussed and assessed. Overall, Lütkepohl and his
coauthors demonstrate that some of the methods they examine could be used to conduct joint
inference across multiple parameters. However, the practical impact of these findings is limited,
as the vast majority of empirical research currently employing VARs is relying on Bayesian
estimation. This raises the main question addressed in the paper: how can joint error bands be
constructed to achieve a pre-specified probability content in Bayesian VAR models?

In the Bayesian literature, two recently proposed methods for conducting joint inference
have emerged, with significant implications due to their adaptability to various time series
models. The sup-t estimator introduced by Montiel Olea and Plagborg-Møller (2019), employs
numerical optimization to determine the optimal pointwise quantile that achieves joint coverage
across multiple parameters. Another method independently introduced by Akram et al. (2016)
and Inoue and Kilian (2022) treats the multivariate posterior draws as individual models
satisfying structural restrictions. This method uses a vector-valued loss function to retain a
specified share of draws (corresponding to the credibility level) with the lowest loss values. An
envelope around the impulse response functions is then constructed by taking the minimum
and maximum responses across horizons and structural parameters, a step that gives this
method its name — min-max. While both methods are readily applicable in practice, their
empirical properties have not been thoroughly evaluated, raising questions whether the error
bands achieve the desired probability content. More importantly, the sup-t and the min-max
estimator produce considerably different uncertainty estimates.

By conducting series of simulation experiments using four widely adopted structural VAR
models, I demonstrate that conventional pointwise quantiles understate estimation uncertainty
when the analysis requires joint inference across multiple parameters. Moreover, the sup-t
estimator achieves the nominal probability content jointly across multiple parameters, but the
performance of the min-max estimator depends on the specific vector-valued loss function,

1In the frequentist framework, these are confidence intervals, while in the Bayesian framework, they are credible
intervals.
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which is employed. In particular, the min-max estimator relying on absolute, quadratic, or
angular loss functions, as suggested by Inoue and Kilian (2022), tends to overstate joint uncer-
tainty and produces more conservative estimates of the error bands. Conversely, the min-max
estimator using the Chebyshev loss function, as proposed by Akram et al. (2016), shows similar
coverage to the sup-t estimator. A further important contribution of this paper is that, I enhance
the min-max estimator under the three loss functions proposed by Inoue and Kilian (2022) by
adding an additional calibration step. The error bands computed with the enhanced min-max
estimator are subsequently shown to achieve the nominal probability content, but they are
tighter in comparison to the error bands computed with the sup-t estimator. Finally, I also show
that the min-max estimator preserves the covariance among structural parameters, which are
within the joint error bands. This supports the argument put forward by Inoue and Kilian (2022),
who motivate the usage of their method by its ability to capture the shape and comovement
of impulse responses, rather than concentrating only on error bands that have the desired
probability content.

The remainder of the paper is organized as follows. The next section reviews the relevant
literature, also discussing the frequentist methods, as advancements in this framework have
significantly contributed to enhancing the Bayesian procedures proposed in this study. Section
3 describes a general reduced-form model, along with structural identification methodologies
within the Bayesian framework. It also provides a detailed explanation of the joint inference
methods evaluated in this paper and introduces the experimental design, which follows the
simulation-based calibration procedure recently proposed by Talts et al. (2020). To the best of
my knowledge, this is the first paper to apply it in macroeconometrics. Its primary practical
application lies in evaluating whether any Bayesian estimation routine properly samples from
the underlying posterior distribution. Section 4 outlines the data-generating processes and
presents the analysis of results. Section 5 highlights the practical contributions of the joint
inference methods, showing that error bands for the fiscal multiplier computed with joint
inference methods could be between 51% and 91% wider, depending on the selected credibility
level, compared to conventional pointwise estimates. The second example demonstrates the
similarities between impulse responses and forecasts by applying the joint inference methods
to a pseudo-out-of-sample projection exercise for inflation and GDP in the US and euro area
using two distinct time series models. Section 6 concludes the paper.

2 Literature Review

Joint inference methods have long been a focal point of interest for econometricians. For
example, the Wald test is commonly used in reduced-form regression to assess whether a set
of model parameters differs significantly from a specified value. Joint inference methods for
structural VAR models can be thought of in a similar way, but they have two key dimensions:
they can be used either to construct error bands that achieve the nominal coverage level or
to capture the joint distribution among structural parameters. The methods discussed in this
section address either the first aspect or both.

Sims and Zha (1999) were among the first to recognize the limitations of pointwise inference
for impulse responses. Although their solution relies on Bayesian methods, most subsequent
studies have employed frequentist techniques (e.g., Staszewska (2007), Jordà (2009), and Inoue
and Kilian (2016)). The simplest technique for joint inference about impulse responses is
presented in the well-known textbook by Lütkepohl (2005). It builds on Bonferroni’s (1936)
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method, which adjusts significance levels for multiple tests by dividing the overall significance
level by the number of structural parameters considered. This adjustment ensures that the
probability of making one or more Type I errors across multiple comparisons remains below
the desired threshold.

Lütkepohl et al. (2015) provide a review of the most commonly used frequentist approaches
for conducting joint inference about impulse responses. Their objective is to compare the
coverage levels of pointwise and joint confidence bands through Monte Carlo simulations. They
demonstrate that conventional confidence bands exhibit very low coverage levels in SVARs
when the economic analysis requires joint inference across multiple structural parameters.
Additionally, they find that Bonferroni error bands are overly conservative in summarizing joint
uncertainty. To address this, Lütkepohl et al. (2015) propose an iterative procedure that discards
draws from the bootstrap distribution until the resulting error bands achieve the nominal joint
coverage level. This procedure has inspired the calibration techniques proposed in this study
to enhance Bayesian inference methods. Lütkepohl et al. (2015) also show that the adjusted
Bonferroni error bands, along with another method known as the neighboring paths procedure
(Staszewska (2007)), systematically achieve the desired nominal joint coverage level. Another
significant contribution of their study is the finding that Scheffé bands, as proposed by Jordà
(2009), do not reach the prespecified confidence level.2 Conversely, confidence bands adapted
from the method by Wolf and Wunderli (2015) for constructing multi-horizon forecasts do
achieve sufficient coverage but tend to be wider compared to other joint inference techniques.3

In a similar Monte Carlo study, Lütkepohl et al. (2018) demonstrate that joint confidence
bands, constructed by evaluating the density of structural models, are also preferable when the
researcher seeks a coverage level corresponding to the prespecified confidence level.

The Bayesian literature focusing on joint inference about impulse response functions in VARs
remains relatively scarce. Inoue and Kilian (2013) propose a method to estimate a joint credible
region by ranking the posterior density of each structural draw. Initially, draws are generated
from the joint posterior distribution of the reduced-form VAR parameters, and the posterior
density value is computed. Subsequently, draws that do not satisfy the theoretically motivated
sign restrictions on the impulse response functions are discarded, and the remaining draws are
ranked by the value of their posterior density. According to Inoue and Kilian (2013), the draw
that maximises the posterior density, known as the modal model, serves as an estimator of
the central tendency of the impulse response functions. Furthermore, the (1− α)100% highest
posterior density credible region of admissible models is used as an estimator for the inference
about the impulse response functions.

In a more recent study, Montiel Olea and Plagborg-Møller (2019) propose the so-called sup-t
method for conducting joint inference about impulse responses. Their main analysis is conduc-
ted within the frequentist framework4, but they also propose a procedure that could be applied
within Bayesian estimation. This estimator requires the use of numerical optimization to find
the pointwise quantiles that achieve the nominal coverage level for all structural parameters
simultaneously. Montiel Olea and Plagborg-Møller (2019) also compare their method with more
traditional approaches for joint inference, such as the Bonferroni (1936) and Sidak (1967) error
bands. The Šidák method, similar to Bonferroni, offers a slightly more powerful adjustment
by assuming the tests are independent, and adjusts the significance level using a formula that
accounts for this assumption. In anycase both methods are used only as a benchmark compar-
2The Scheffé is similar to the Bonferroni approach, but adjusts the critical value instead of the significance level.
3Both of these methods have only frequentist interpretations and are not discussed further here for brevity.
4The frequentist sup-t estimator is also suggested by Inoue et al. (2023) as a reliable method for conducting joint

inference about impulse responses estimated with local projections.
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ison to show that the sup-t method produces tighter error bands. Although this is the only
study in the Bayesian framework that provides a simulation exercise to evaluate the empirical
properties of a joint error band, their empirical model does not resemble any established VAR,
but rather serves as a theoretical example. Furthermore, the simulation does not provide a fully
Bayesian interpretation, as it is only valid for a single point estimate. A further drawback of
this method is that it only provides error bands, preventing the applied econometrician from
making probability statements about the conditional shape or comovements of endogenous
variables.

Another approach for modeling joint inference within a generic Bayesian framework was
originally proposed by Bernardo (2011). More recently, Inoue and Kilian (2022) adapted this
technique to SVARs to conduct joint inference about impulse response functions. The method
addresses both shortcomings associated with pointwise impulse responses. Compared to the
joint inference method proposed earlier in Inoue and Kilian (2013), it is less computationally
burdensome and, crucially, more easily adaptable to different SVAR models, without a need to
specify the structural likelihood function, which might not be a trivial task.

In essence, for each posterior draw of the vector of structural parameters, Inoue and Kilian
(2022) calculate the average distance to all other draws under a vector-valued loss function,
and then retain the first (1 − α)100% draws, starting with the draw having the lowest value.
The constructed lowest posterior risk region visually approximates the joint credible region as
the number of draws approaches infinity. The members of this region resemble the shotgun
trajectories used in ballistics rather than the conventional credible band.5 Finally, the joint
error bands are computed by constructing the upper and lower envelopes around the shotgun
trajectories within the credible region, which is referred to as the min-max estimator.

In a related study, Akram et al. (2016) generate projection fan charts for a Bayesian DSGE model
using a simplified version of the methodology proposed by Inoue and Kilian (2022). Their
approach does not depend on the average distance across draws, but rather on the distance
of each draw from a pointwise measure of central tendency—specifically, the pointwise mean.
Another key difference between the two studies is that Inoue and Kilian (2022) employ a variety
of vector-valued loss functions, including absolute, quadratic, angular, and Dirac, while Akram
et al. (2016) use only the Chebyshev specification. The choice of loss function proves to be
crucial for the performance of the min-max estimator, as demonstrated in the latter sections of
this paper.

Despite the clear disadvantages of partially ignoring estimation uncertainty due to interdepend-
ence among structural parameters during inference, joint error bands have rarely been used
in applied research (e.g., Herrera and Rangaraju (2020), Zhou (2020), Kilian and Zhou (2022),
Arias et al. (2022), and Güntner et al. (2024)). One possible explanation is that joint error bands
yield significantly wider uncertainty estimates compared to conventional pointwise methods,
yet their performance has not been thoroughly assessed in simulation studies.

5The shotgun trajectories were originally proposed in the context of frequentist methods by Inoue and Kilian (2016).
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3 Methodology

3.1 Model

This subsection defines the reduced-form model and introduces identification methodologies
used in the simulation experiments.

Reduced-form model. The data-generating models employed in the Monte Carlo simulations
follow a general reduced-form VAR setup:

yt = c +
p

∑
l=1

Alyt−l +Vzt + ut, for 1 ≤ t ≤ T, (1)

where yt is (N × 1) vector of endogenous variables, Al are (N ×N)matrices with parameters, c
is (N × 1) vector of intercepts, zt is (G × 1) vector of exogenous variables with its corresponding
(N ×G)matrix of parameters denoted as V, N is the number of endogenous variables, G is the
number of exogenous variables, p is the lag length and T is the sample size. All the models
employed in this study are assumed to be stable, necessitating that det(A(z)) ≠ 0, with the
lag polynomial defined as A(L) ∶= IN×N −A1L − ⋅ ⋅ ⋅ −ApLp and an identity matrix IN of size
(N ×N).

The companion form of the model can be written as

Y = XA + u, (2)

where Y = (y1, y2, . . . , yT)′, X = (X1, X2, . . . , XT)′, Xt = (i′N , y′t−1, . . . , y′t−p, z′t)′,
A = (µ, A1, . . . , Ap)′, u = (u1, u2, . . . , uT)′, and iN is (N × 1) vector of all ones.

Bayesian estimation. The reduced-form VAR parameters are specified with normal-inverse
Wishart prior distribution following a conventional approach (e.g., Inoue and Kilian (2013))

vec(A)∣Σ ∼ N (vec(Ā0), Σ⊗N−1
0 ) and Σ ∼ IWn(ν0S0, ν0), (3)

where N0 is (p ⋅N × p ⋅N) positive definite matrix, S0 is (N ×N) covariance matrix and ν0 > 0.
This model implies a posterior distribution of the same functional family as the prior given by

vec(A)∣Σ ∼ N (vec(ĀT), Σ⊗N−1
T ) and Σ ∼ IWn(νTST , νT), (4)

where

νT = T + ν, NT = N0 +X′X, ĀT = N−1
T (N0Ā0 +X′XÂ),

ST =
ν0

νT
S0 +

T
νT

Σ̂ + 1
νT
(Â − Ā0)′N0N−1

T X′X(Â − Ā0),

Â = (X′X)−1X′Y and Σ̂ = (Y −XÂ)′(Y −XÂ)/T.

Throughout this paper, two distinct parametrizations of the prior distribution are considered: a
”non-informative” prior, characterized by:

ν0 = 0, S0 = ON×N , Ā0 = Op⋅N+R×N , and N−1
0 = Op⋅N+R×p⋅N+R,
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where O denotes zero matrix with size indicated by the subindex. The second prior parametriz-
ation, referred to as a ”unit root,” is defined by:

ν0 = N + 2, S0 =
⎛
⎜⎜⎜
⎝

σ̃2
1

⋱
σ̃2

p

⎞
⎟⎟⎟
⎠

, Ā0 = (O′R×N I′N×N O′p⋅(N−1)×N)
′
, and

N−1
0 = (ωIR×R 1−αλS−1

0 2−αλS−1
0 . . . p−αλS−1

0 )
′
,

where ω = 105, λ = 0.2, α = 2, and σ̃2⋅ is the error’s variance of the regression yt,⋅ = γ0 +γ1yt−1,⋅ + et,
which is estimated using OLS.

Structural Model. The computation of the impulse response coefficients requires first defining
the following companion form

⎛
⎜⎜⎜⎜⎜
⎝

yt

yt−1

⋮
yt−p

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Yt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 A2 . . . Ap−1 Ap

IN×N ON×N ON×N ON×N

ON×N IN×N ON×N ON×N

⋮ ⋱ ⋮ ⋮
ON×N ON×N . . . IN×N ON×N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ã

⎛
⎜⎜⎜⎜⎜
⎝

yt−1

yt−2

⋮
yt−p−1

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Yt−1

+

⎛
⎜⎜⎜⎜⎜
⎝

ut

0N

⋮
0N

⎞
⎟⎟⎟⎟⎟
⎠

²
Ut

.

It is well known that by successive substitution for Yt−l the definition of the companion form
reduces to

Yt−l = Al+1Yt−1 +
l
∑
b=0

AbUt+l−b

and left-multiplying by J = (IN×N 0N×(p−1)N) results in:

yt+l = JAl+1Yt−1 +
l
∑
b=0

JAbJ′ut+l−b.

Finally, the n-th row and s-th column element θn,s,h of the impulse response coefficient matrix
Θh, which quantifies the effect on variable n in response to a structural shock s of size one in
period h, is defined as:

Θh = (θn,s,h) = JAhJ′B,

where B is the structural impact matrix. A linear transformation on the reduced-form errors
defines the structural shocks as εt = B−1ut, which are assumed to be contemporaneously
uncorrelated and have unit variance. Therefore, the relationship BB′ = Σ must hold. How-
ever, the matrix B is not unique, and identification requires additional assumptions. In the
simulation exercises, four different identification methodologies are considered. The first is
recursive identification resulting in structural impact matrix B−1 = chol(Σ), i.e., the lower
triangular matrix of the Cholesky decomposition. The second identification strategy relies on
sign restrictions motivated by economic theory. To this end, for each posterior draw, i, of the
error’s covariance matrix, the lower triangular matrix of the Cholesky decomposition chol(Σi)
is calculated and then an orthogonal matrix, Qi, is drawn such that the structural impact matrix
given by B−1

i = chol(Σi)Qi implies impulse responses, which are kept only if they satisfy the
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imposed sign restrictions. The described procedure is repeated L times for each posterior draw
of the reduced-form model. The third methodology requires an instrumental variable, zt, which
enters the reduced-form VAR as exogenous variable and the column vector V gives the first
column of the structural impact matrix, B−1, while the remaining columns have zero in all
entries.6 The term Vzt is included in the reduced-form VAR setup only for models, which
rely on instrumental variables for the identification. The fourth and last identification scheme
considered in the Monte Carlo simulations imposes a short-run and long-run restrictions on
the impulse responses. The implementation follows the methodology of Blanchard (1989) that
requires stationary vector of endogenous variables, (i.e., yt ∼ I(0)). Then defining the matrix
Ω = J(IpN×pN − Ã)−1J′ allows to derive the structural impact matrix as B =Ω−1chol(ΩΣΩ′).

3.2 Conducting Inference

In this subsection, the uncertainty concepts are defined first, followed by an explanation of the
construction of the error bands using all inference methods evaluated in this study.

Pointwise Inference. Pointwise inference about impulse responses is conducted by constructing
credible interval that achieve predefined probability content for each structural parameter
individually. For the sake of simplicity, a generalized vector of stacked structural parameters
θ ∈ RK is defined.

Definition 1 (Credible interval). The (1 − α)100% credible interval, Θ1−α
j , for any structural

parameter θj ∈ R is an interval with lower and upper bounds given by [
¯
θj, θ̄j] and coverage

probability 1− α such that

Pr (θj ∈ Θ1−α
j ) = Pr (

¯
θ1−α

j ≤ θj ≤ θ̄1−α
j ) = 1− α.

This credible interval is expected to include the actual value of θj with a probability 1 − α.
The conventional approach of constructing the error bands is to compute the corresponding
quantiles over all posterior draws.

Definition 2 (Conventional (pointwise) error band). The (1− α)100% conventional (pointwise)
error band, Θ̂1−α,PW

j , for any structural parameter, θj ∈ R, is an interval given by

Θ̂1−α,PW
j = [

¯
θ1−α,PW

j , θ̄1−α,PW
j ] ,

where
¯
θ1−α,PW

j and θ̄1−α,PW
j are the individual (α/2)100-th and (1− α/2)100-th percentiles, re-

spectively.

Joint Inference. Conducting joint inference results in error bands that must achieve a predefined
probability content across multiple structural parameters simultaneously. Unlike previous
studies, which apply joint inference across all available variables, horizons, and shocks (e.g.,
Inoue and Kilian (2016, 2022)) or solely across horizons for each impulse response function (e.g.,
Lütkepohl et al. (2015, 2018) and Montiel Olea and Plagborg-Møller (2019)), this paper argues
that error bands are context-specific objects. The selection of variables included in the joint
error bands should be guided by careful consideration of the specific economic question. For
instance, evaluating different pricing theories in international trade (such as dominant currency,

6This instrumental variable identification methodology is discussed in details by Paul (2020) and has the usual
requirements, namely relevancy with respect to the structural shock of interest and also exogeneity with respect to the
remaining structural shocks.
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producer currency, or local currency pricing) requires examining the simultaneous response
of import and export prices to a foreign monetary policy shock across individual horizons.
On the other hand, more frequently, IRF analysis focuses on the persistence of the response,
like Jarociński and Karadi (2020), who argue that ”real GDP and the price level both decline
persistently by about 10 basis points and 5 basis points, respectively”. This example implies the
simultaneous evaluation of IRFs across horizons. In practice, any combination of both types of
inference can appear. For example, the computation of a fiscal multiplier, often defined as the
cumulative sum of the impulse response of GDP divided by that of government expenditure,
requires simultaneous inference of two variables across several horizons. Furthermore, if the
SVAR identifies several shocks, such as in Blanchard (1989), then simultaneous inference about
a positive demand shock and a favorable supply shock on unemployment and output must be
carried out, considering the responses of two variables to two shocks across several horizons.
Therefore, depending on the parameters targeted by the error bands, four possible types of
joint inference and their corresponding vectors of stacked structural parameters are considered.
The definitions that follow are inspired by Akram et al. (2016). First, the construction of error
bands that achieve predefined probability content simultaneously for all variables at a specific
horizon requires a multivariate (MV) vector of structural parameters.

Definition 3 (MV vector of structural parameters). Let θ ∈ RK denotes the MV vector of
structural parameters, defined as

θ = (θ1,s,h, θ2,s,h, . . . , θn,s,h)′ for s = 1, . . . , S and h = 1, . . . , H.

In the same vein, the time-simultaneous (TS) vector of structural parameters is used by a
practitioner targeting error bands that achieve predefined probability content simultaneously
for all horizons of a given variable.

Definition 4 (TS vector of structural parameters). Let θ ∈ RK denotes the TS vector of structural
parameters, defined as

θ = (θn,s,1, θn,s,2, . . . , θn,s,H)′ for n = 1, . . . , N and s = 1, . . . , S.

A natural extension of the previous two cases occurs when the error bands must achieve
predefined probability content simultaneously for the impulse responses at all horizons for
every variable reacting to a single shock. This requires a multivariate and time-simultaneous
(MV-TS) vector of structural parameters.

Definition 5 (MV-TS vector of structural parameters). Let θ ∈ RK denotes the MV-TS vector of
structural parameters, defined as

θ = vec

⎛
⎜⎜⎜⎜⎜
⎝

θ1,s,1 θ2,s,1 . . . θN,s,1

θ1,s,2 θ2,s,2 . . . θN,s,2

⋮ ⋮ ⋮
θ1,s,H θ2,s,H . . . θN,s,H

⎞
⎟⎟⎟⎟⎟
⎠

for s = 1, . . . , S.

In the most comprehensive case, when the economic question requires error bands that achieve
predefined probability content simultaneously at all horizons for all variables reacting to all
shocks, it is necessary to construct a multivariate, time-simultaneous and cross-shock (MV-TS-
CS) vector of structural parameters.
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Definition 6 (MV-TS-CS vector of structural parameters). Let θ ∈ RK denote the MV-TS-CS
vector of structural parameters, defined as

θ = vec

⎛
⎜⎜⎜⎜⎜
⎝

θ1,1 θ2,1 . . . θN,1

θ1,2 θ2,2 . . . θN,2

⋮ ⋮ ⋮
θ1,S θ2,S . . . θN,S

⎞
⎟⎟⎟⎟⎟
⎠

,

where θn,s = (θn,s,1, θn,s,2, . . . , θn,s,H)′.

Definition 7 (Joint credible region). The (1− α)100% joint credible region, Θ1−α, for any vector
of structural parameters, θ ∈ RK, is a Cartesian product given by

Θ1−α =
K
⨉
j=1
[
¯
θ1−α

j , θ̄1−α
j ]

and coverage probability 1− α such that

Pr (θ ∈ Θ1−α) = Pr
⎛
⎝

K
⋂
j=1
(

¯
θ1−α

j ≤ θj ≤ θ̄1−α
j )
⎞
⎠
= 1− α.

Bonferroni’s (1936) inequality is the standard approach that relates joint probabilities to marginal
probabilities. Its application to constructing joint confidence regions for forecasts in VARs is
discussed in the seminal textbook by Lütkepohl (2005). In terms of the definitions of the credible
interval and region, the inequality implies that

Pr (θ ∈ Θ1−α) ≥ 1−
K
∑
j=1

Pr (θj ∉ Θ1−α
j ) .

This inequality can be used to construct joint error bands. For example, a 95% TS error band for
a variable across 5 horizons requires the marginal probability of each structural parameter to be
0.99, since 5 ⋅ (1− 0.99) = 0.05. Because the relationship is an inequality, the proposed error band
has at least 95% probability content, but it may be more conservative. Additionally, when a
large number of structural parameters are of interest, the bounds can become uninformative.

Definition 8 (Bonferroni error band). The (1− α)100% Bonferroni error band, Θ̂1−α,B, for the
vector of structural parameters, θ ∈ RK, is a Cartesian product given by

Θ̂1−α,B =
K
⨉
j=1
[
¯
θ

1−α/K,PW
j , θ̄

1−α/K,PW
j ] .

Similarly to the Bonferroni’s approach, Sidak (1967) proposes another correction method, which
assumes that all parameters of interest are mutually independent. This method relies on the
following inequality:

Pr (θ ∈ Θ1−α) ≥ 1−
K
∏
j=1

Pr (θj ∉ Θ1−α
j ) .

This correction approach shares all the drawbacks of the previous method, but it is less conser-
vative for a small number of structural coefficients. The respective credible region is defined
similarly.
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Definition 9 (Šidák error band). The (1− α)100% Šidák error band, Θ̂1−α,S, for any vector of
structural parameters, θ ∈ RK, is a Cartesian product given by

Θ̂1−α,S =
K
⨉
j=1
[
¯
θ
(1−α)1/K ,PW
j , θ̄

(1−α)1/K ,PW
j ] .

Montiel Olea and Plagborg-Møller (2019) propose constructing joint error bands using the sup-t
method, which builds on the previous two approaches. Although their primary analysis is in
the frequentist framework, relying on parametric solutions, they also propose a methodology
tailored to the Bayesian framework. Specifically, Montiel Olea and Plagborg-Møller (2019)
suggest using numerical optimization to solve for the pointwise quantile that achieves the joint
nominal coverage level of the posterior draws.7 The proper definition of the sup-t credible
region relies on the notation of the posterior draws of the structural parameters, which, for
D draws, is given by θ

(1)
j , . . . , θ

(D)
j . Montiel Olea and Plagborg-Møller (2019) refer to the

optimization procedure as calibration, while Lütkepohl et al. (2015) call a similar process
adjustment. In this paper, the former terminology is adhered to. Since additional calibration
methods will be introduced in the following paragraphs, each will be given a distinct name. The
calibration method related to the sup-t will be referred to as pointwise quantile optimization
(PQO).

Definition 10 (Sup-t (PQO) error band). The (1− α)100% sup-t (PQO) error band, Θ̂1−α,Su, for
any vector of structural parameters, θ ∈ RK, is is a Cartesian product given by

Θ̂1−α,Su =
K
⨉
j=1
[
¯
θ1−α̂,PW

j , θ̄1−α̂,PW
j ] ,

where

α̂ = sup
⎧⎪⎪⎨⎪⎪⎩

α̂ ∈ [α/(2K), α/2]
RRRRRRRRRRR
D−1

D
∑
d=1

1
⎛
⎝
θ(d) ∈

K
⨉
j=1
[
¯
θ1−α̂,PW

j , θ̄1−α̂,PW
j ]

⎞
⎠
≥ 1− α

⎫⎪⎪⎬⎪⎪⎭

and 1(⋅) denotes indicator function.

Akram et al. (2016) and Inoue and Kilian (2022) propose two related methods based on vector-
valued loss functions to construct joint error bands. In the former study, Akram et al. (2016)
evaluate the distance of each posterior draw to a pointwise measure of central tendency,
specifically the mean, while in the latter study, Inoue and Kilian (2022) evaluate the average
distance of each posterior draw to every other draw. The main results in this paper focus on the
proposal by Akram et al. (2016).

Definition 11 (Lowest posterior risk joint credible set). The (1− α)100% vector of structural
parameters draws, θ(d) ∈ RK, which are closest to a specified pointwise central tendency
measure, θ̃ ∈ RK, under a vector-valued loss function, L (θ(d), θ̃) are members of the lowest
posterior risk joint credible set denoted as Θ̂1−α

L .

Definition 12 (Min-max error band). The (1− α)100% closest vector of structural parameters
draws, θ(d) ∈ RK, to any pointwise central tendency measure, θ̃ ∈ RK, evaluated under a

7Similar calibration procedures are also discussed in Gafarov et al. (2018) and Kaido et al. (2019).
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vector-valued loss function, L, is a Cartesian product given by

Θ̂1−α,M =
K
⨉
j=1
[
¯
θ1−α,M

j , θ̄1−α,M
j ] ,

where

¯
θ1−α,M

j = min
⎧⎪⎪⎨⎪⎪⎩

θ1−α,M
j

RRRRRRRRRRR
θ1−α,M ∈ Θ̂1−α

L

⎫⎪⎪⎬⎪⎪⎭
and θ̄1−α,M

j = max
⎧⎪⎪⎨⎪⎪⎩

θ1−α,M
j

RRRRRRRRRRR
θ1−α,M ∈ Θ̂1−α

L

⎫⎪⎪⎬⎪⎪⎭
.

The preliminary results indicate that this method of constructing joint error bands may signi-
ficantly overestimate the nominal credibility level. Inoue and Kilian (2022) are aware of this
possibility and suggest the potential use of a calibration technique similar to the proposition of
Montiel Olea and Plagborg-Møller (2019). However, their study does not include a simulation
exercise or a details on how to implement the calibration step. Two possible routines to optimize
the coverage level of the min-max error bands are explored in this paper. The first approach
is to optimize the percentage of retained draws of the lowest posterior risk set, ensuring that
their effective coverage level is at least equal to the nominal credibility level. This approach is
referred to as loss quantile optimization (LQO).

Definition 13 (Min-max (LQO) error band). The (1 − α)100% min-max (LQO) error band,
Θ̂1−α,M(LQO), for any vector of structural parameters, θ ∈ RK, is a Cartesian product given by

Θ̂1−α,M(LQO) =
K
⨉
j=1
[
¯
θ1−α̂,M

j , θ̄1−α̂,M
j ] ,

where

α̂ = sup
⎧⎪⎪⎨⎪⎪⎩

α̂ ∈ (α, 1)
RRRRRRRRRRR
D−1

D
∑
d=1

1
⎛
⎝
θ(d) ∈

K
⨉
j=1
[
¯
θ1−α̂,M

j , θ̄1−α̂,M
j ]

⎞
⎠
≥ 1− α

⎫⎪⎪⎬⎪⎪⎭
.

The second optimization method applied to the min-max error bands is an iterative procedure
proposed by Lütkepohl et al. (2015). After constructing the lowest posterior risk set along with
the min-max error band, all draws on the boundary of the hyperrectangular box are discarded
until the posterior draws within the new error band achieve the nominal credibility level. This
approach is referred to as boundary draw rejection (BDR).

Definition 14 (Min-max (BDR) error band). The (1 − α)100% min-max (BDR) error band,
Θ̂1−α,M(LQO), for any vector of structural parameters, θ ∈ RK, is a Cartesian product given by

Θ̂1−α,M(BDR) =
K
⨉
j=1
[
¯
θ

1−α,M(BDR)
j , θ̄

1−α,M(BDR)
j ] s.t.

D−1
D
∑
d=1

1
⎛
⎝
θ(d) ∈

K
⨉
j=1
[
¯
θ

1−α,M(BDR)
j , θ̄

1−α,M(BDR)
j ]

⎞
⎠
= 1− α,

where
¯
θ1−α,M(BDR) ∈ Θ̌1−α

L and θ̄1−α,M(BDR) ∈ Θ̌1−α
L . The set Θ̌1−α

L is obtained as draws which
belong to the boundaries of the error bands of the min-max estimator are iteratively discarded
from the lowest posterior risk joint credible set, Θ̂1−α

L , until the coverage level condition is
satisfied.
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The min-max estimator relies on specification of a vector-valued loss function to calculate the
distance of each draw from a measure of a central tendency. The functional forms considered
in this study are: absolute, quadratic, angular, and Chebyshev. The first three functions are
proposed by Inoue and Kilian (2022), while the last is suggested by Akram et al. (2016). Inoue
and Kilian (2022) also propose a Dirac loss function, but it is non-separable, unlike the others,
making it more complex to derive the credible region for various models and it has limited
practical relevance. The formal definitions of the vector-valued loss functions are provided
below.

L(θ, θ̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑K
j=1 ∣θ j − θ̃ j∣ (absolute loss)

∑K
j=1(θ j − θ̃ j)2 (quadratic loss)
1

πNS ∑
N
i=1∑

S
j=1 cos−1 ( θi,j ⋅θ̃i,j

∥θi,j∥∥θ̃i,j∥
) (angular loss)

max
j
∣θ j − θ̃ j∣ (Chebyshev loss)

Since the pointwise median is the estimator that solves the real-valued absolute loss function,
it is used as a measure of central tendency for the first vector-valued loss function. Similarly,
the mean solves the real-valued quadratic loss function, and thus, it is used as the pointwise
measure for the second function. The latter two loss functions do not have such pointwise
estimators, so the pointwise median is used because it is the most frequently employed measure.

Inoue and Kilian (2022) advocate for the use of the angular loss function because it is inde-
pendent of the scale of the endogenous variables, which is a highly appealing property in
the context of SVARs. Similarly, the Chebyshev loss function is applied only to draws that
are normalized pointwise, as the maximum distance across different structural parameters is
meaningless otherwise. Therefore, this loss function is also scale-invariant, even though this
property is imposed in a different way.

3.3 Illustrative Example

This section visually compares the proposed joint error bands and the conventional pointwise
error bands for a bivariate normally distributed toy parameter space, which is assumed to
represent a posterior distribution given by:

⎛
⎝

θ1

θ2

⎞
⎠
∼ N
⎛
⎝
⎛
⎝

0
0

⎞
⎠

,
⎛
⎝

1 0
0 0.25

⎞
⎠
⎞
⎠

.

The estimates of the error bands are computed for 20,000 draws and plotted in Figure 1.
As expected, the pointwise error bands is the smallest rectangle and is contained within all
joint error bands, suggesting that this method provides the least conservative estimates of
uncertainty. On the other hand, the Bonferroni, Sidák, and sup-t error bands nearly coincide for
both parameters, which is not necessarily the case for parameter space of interest with more
parameters. For the sake of simplicity, the analysis considers only the absolute loss function
for the class of min-max estimators. The non-calibrated min-max error bands encompass all
other error bands, which implies that it is the most conservative estimator. In comparison, the
min-max (LQO) error bands are tighter and even coincide with the pointwise error bands for
θ1. However, the area enclosed within the box of the min-max (BDR) error bands is smaller,
making it a more precise estimator. These conclusions hold true for both the 68% credible

13



region and the 90% credible region, although the error bands for the 90% credible region are
more dispersed, reflecting the higher credibility level.

Figure 1
Pointwise and joint inference about toy parameters
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Notes: The squares depict pointwise and joint error bands for the toy parameters. The min-max estimators
are computed only with absolute loss function. The figure on the left side shows results for 68% credible
region and the figure on the right side shows results for 90% credible region.

The joint inference methods are formally accessed by comparing the relative difference between
the width of the joint error bands and the pointwise error bands as

∆ = (H ((θ̄1−α,e −
¯
θ1−α,e)⊘ (θ̄1−α,PW −

¯
θ1−α,PW))− 1) ⋅ 100 for e ∈ {B, S, Su, M, M(LQO), M(BDR)},

where H(⋅) is the harmonic mean and ⊘ denotes the element-wise division. The harmonic mean
is selected here as it is the most appropriate measure of the average for ratios.

First, the error bands are computed for a range of covariances in the interval [−0.45, 0.45], which
implies correlations in the interval [−0.9, 0.9] for the toy parameter space. The relative width of
the error bands against the correlation between the parameters is plotted in Figure 2. The 68%
non-calibrated min-max error band is between 70% and 90% wider than the corresponding
pointwise error band, but for the 90% credible interval, this difference falls to the range of
40%-70%. The min-max (LQO) method produces tighter error bands but is strongly dominated
by the sup-t and min-max (BDR) methods. The error bands corresponding to the latter two
methods nearly coincide being between 18% and 35% wider for the 68% credible region and
between 10% and 18% wider for the 90% credible region compared to the pointwise error bands.
The relative width of the min-max error bands and, to a certain extent, the min-max (LQO)
error bands does not change smoothly with marginal increases in the correlation among the toy
parameters. This is caused by the variability in the error bands of roughly 10% for simulations
generated with different seeds of the random number generator. This issue could not be
resolved by increasing the number of draws from the posterior distribution. Consequently, the
min-max error bands could be less appealing for policy analysis, but the results show that the
BDR method does not exhibit the same problem.
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Figure 2
Relative width of the joint error bands
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Notes: The lines depict relative width of the joint error bands in comparison to the pointwise error bands
against correlation of the toy parameters. The min-max class of estimators are computed only with
absolute loss function. The figure on the left side shows results for the 68% credible region and the figure
on the right side shows results for the 90% credible region.

In summary, the difference between the width of the joint error bands and the pointwise error
bands could be considered significant, but it is not certain that this is an argument to overlook
the construction of proper error bands. Except the Bonferroni’s and Sidák’s error bands, all
other joint inference methods produce error bands that decrease with the absolute value of the
correlation between the parameters. Since VARs usually have correlated structural parameters,
this strengthens the case for employing joint error bands. From this perspective the behavior
of an applied econometrician who decides to ignore the join uncertainty is analogous to an
18th-century astronomer who is afraid to combine observations from different sources when
making computations. Moreover, the loss of precision associated with having joint error bands
is smaller for regions with higher credibility.

3.4 Simulation Design

The simulation strategy is designed with three objectives: (i) to evaluate the underestimation
of uncertainty when the economic question requires joint inference but the economist reports
conventional pointwise error bands, (ii) to assess the ability of different methods of conducting
joint inference to properly account for different types of targeted uncertainty (i.e., MV, TS,
MV-TS, and MV-TS-CS error bands), and (iii) to compare the width of the joint error bands.

Recently, Talts et al. (2020) proposed a general procedure called simulation-based calibration8

for validating the inference of Bayesian estimation algorithms. The error bands are evaluated
using the property that the credible regions for parameters retain frequentist coverage on

8Simulation-based calibration refers to the Monte Carlo procedure used in this study, which is different from the
calibration procedures used to adjust the nominal coverage of the joint error bands introduced in the previous section.
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average across the prior if the model is specified as in the procedure proposed by Talts et al.
(2020) (see also Gelman et al. (1996), Little (2006), and Cook et al. (2006)).

The simulation exercise begins by drawing model parameters from the prior distribution. Based
on these parameter values, the true impulse responses are computed, and endogenous variables
are simulated. The model is then fitted to the simulated data using D posterior draws, which
are saved, and the pointwise and joint error bands are computed. These steps are repeated C
times, and the appropriate coverage statistics and average relative width are calculated for each
type of targeted uncertainty.

For any credibility level (1− α)100%, the coverage statistics is defined as

Π = C−1
C
∑
c=1

1 ((θ)(c) ∈ [(
¯
θ1−α)(c), (θ̄1−α)(c)]) ⋅ 100,

where 1(⋅) is the indicator function defined over the true structural coefficient, (θ)(c), and the
estimated lower, (

¯
θ1−α)(c), and upper, (θ̄1−α)(c), bounds for each iteration, c. If the inference

algorithm is correct the coverage statistics tends to the nominal credibility level, (1− α)100%, as
the total number of iterations, C, increases. Depending on the inference type, which is targeted
with the error band the vector of structural parameters will include different elements and there
are 5 different types of the coverage statistics: PW, MV, TS, MV-TS, and MV-TS-CS.

The simulation strategy requires a well-defined generative model. Since the data generating
processes (described in the next section) resemble the real-world empirical VAR models, their
parameter distributions are unknown. Therefore, using common prior parametrizations (”non-
informative” or ”unit root”) as initial parameter distributions might cause non-defined or
economically implausible models. To solve this problem, the models are first estimated using
standard priors and then the the posterior distributions are used as priors in the simulation
procedure.9

In the empirical literature authors usually report 68% and 95% credible intervals (e.g., Jarociński
and Karadi (2020), Paul (2020) and Arias et al. (2019)), but there is no clear cut which one is
preferable (see Kilian and Lütkepohl (2017)). The analysis in this paper is conducted for 68%
and 90% credible intervals. The latter level is being selected to produce more informative
statistics if the coverage is overstated.

Regardless of the large number of iterations, the experiments are still subject to uncertainty;
and thus, the standard error of the coverage statistics and the relative width is calculated using
bootstrap method.10 The complete simulation procedure is formally described below.

9This strategy is proposed for a similar experiment by Gabry et al. (2019) providing an example from natural sciences
where simulated air pollution data based on loose priors has extreme density.
10See Koehler et al. (2009) for a discussion on the uncertainty reporting for Monte Carlo experiments.
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Simulation-based calibration
set prior distributions Σ ∼ IWn(ν0S0, ν0) and vec(A) ∼ N (vec(Ā0), Σ⊗N−1

0 )

for c in C do
draw posterior (Σ)(c) ∼ IWn(νTST , νT) and (vec(A))(c) ∼ N (vec(ĀT), (Σ)(c) ⊗N−1

T )

evaluate structural coefficients, (θn,s,h)
(c)
∼ π (ϕn,s,h∣(Σ)

(c), (vec(A))(c))
simulate endogenous variables, (yt)

(c)
∼ π (yt∣(Σ)

(c), (vec(A))(c))
for d in D do

draw posterior, (Σ)(d∶c) ∼ IWn(νT̃ST̃ , νT̃) and (vec(A))(d∶c) ∼ N (vec(ĀT̃), (Σ)
(d∶c)
⊗N−1

T̃
)

evaluate structural coefficients, (θn,s,h)
(d∶c)

∼ π (θn,s,h∣(Σ)
(d∶c), (vec(A))(d∶c))

end for
compute the pointwise and joint error bands using using (θn,s,h)

(d∶c)
end for
compute the coverage statistics, Π, and average relative width, ∆.

4 Experiments

4.1 Data Generating Processes

This subsection introduces the specifics of the data generating processes used in the simulation
exercises. In short those are: i) the quarterly fiscal model of Ramey (2019) identified with
short-run exclusion restrictions; ii) the quarterly macro model of Peersman (2005) identified
with sign restrictions; iii) the monthly monetary model of Jarociński and Karadi (2020) identified
with an instrumental variable; and iv) the quarterly macro model of Blanchard and Quah (1989)
identified with long-run exclusion restrictions.

DGP1. The first data generating process follows the fiscal model of Ramey (2019). The VAR
model has three endogenous variables: government spending, gross domestic product and tax
revenue with all variables in real per capita terms specified in logs. The reduced-form model is
estimated initially with “non-informative” prior on quarterly data (from 1939:Q1 to 2015:Q4)
with a constant and 4 lags of the endogenous variables. Only government spending shock is
identified through recursive identification scheme based on the Cholesky decomposition. The
proposed variables order implies that the government spending is affected contemporaneously
only by its own structural shock. Figure B.1 in Appendix B shows the impulse responses of
the three endogenous variables for the simulated realizations of the data generating process. A
positive shock to government spending increases all endogenous variables on impact, but the
effect peaks between the 5th and 12th quarter and by the end of the last observed 20th quarter
is already negligible. The experiment for DGP1 is repeated 5000 times conducted on a sample
size of 200 observations and impulse response horizon of 20 quarters, which is characterized by
15000 posterior draws.

DGP2. The second data generating process resembles the empirical model of Peersman (2005).
The VAR model has three endogenous variables: gross domestic product, deflator and 3-month
treasury bill yield with the first two variables in real per capita terms specified in logs and the
third in percentage points. The reduced-form model is estimated initially with “non-informative”
prior on quarterly data (from 1950:Q1 to 2006:Q4) with a constant and 4 lags of the endogenous
variables. The sample period of DGP2 is shorter compared to DGP1 since it excludes periods
with non-responsive monetary policy, and consequently constant yield. Unlike Peersman
(2005), I identify only a supply shock due to computational considerations. The supply shock is
identified with sign restrictions and is assumed to raise the interest rate on impact (holding
only one period), reduce output for 4 quarters and increase prices for 4 quarters. Figure B.2 in

17



Appendix B shows the impulse responses of the three endogenous variables for the simulated
realizations of the data generating process. In most of the simulated models, the output hits the
trough 4 to 8 quarters after impact, while the deflator is experiencing prolonged effects. The
interest rate reacts to the economic developments and remains elevated for significant number
of periods. The experiment for DGP2 is repeated 5000 times and conducted on a sample size of
200 observations. The impulse response horizon consists of 20 quarters, which is characterized
by 150 posterior draws and 150 rotations of the impact matrix.

DGP3. The third data generating process considered in this study mimics the monetary model
of Jarociński and Karadi (2020). The VAR model has four endogenous variables: one year
government bond yield, real gross domestic product, price deflator and excess bond premium.
The yield and the excess bond premium are expressed in percentage points and the other two
variables in logarithm. The reduced-form model is estimated initially with “unit root” prior
on monthly data (from 1990:M2 to 2016:M12) with a constant and 6 lags of the endogenous
variables. Only monetary shock is identified through the instrumental variable denoted as poor
man’s monetary shock by Jarociński and Karadi (2020). It is calculated as the size of the interest
rate change around FOMC meetings when stock prices and interest rates move in opposite
directions. Figure B.3 in Appendix B shows the impulse responses of the four endogenous
variables for the simulated realizations of the data generating process. The experiment for
DGP3 is repeated 5000 times and conducted on a sample size of 270 observations and impulse
response horizon of 36 months, which is characterized by 15000 posterior draws.

DGP4. The last data generating process follows the macro model of Blanchard and Quah
(1989). The VAR model has two endogenous variables: gross national product (specified
as a growth rate) and unemployment rate; and thus the vector of endogenous variables is
potentially stationary. The reduced-form model is estimated initially with “non-informative”
priors on quarterly data (from 1948:Q2 to 1987:Q4) with a constant and 4 lags of the endogenous
variables. In contrast to the previous data generating processes, two structural shocks, namely
supply and demand, are identified imposing long-run restrictions. In particular, it is assumed
that neither shock has long-run effect on unemployment and also the only supply shock has
long-run effect on output. Figure B.4 in Appendix B shows the impulse responses of the two
endogenous variables in response to both structural shocks for the simulated realizations of the
data generating process. Structural demand shocks have a hump-shaped effect on GNP and
unemployment with the effect peaking by the end of the first year and quickly vanishing by
end of the fourth year. The supply shock has an even shorter lived effect on unemployment,
but GNP remains elevated in the long run with maximum achieved by the end of the third year
after the impact. The experiment for DGP4 is repeated 5000 times conducted on a sample size
of 200 observations and impulse response horizon of 20 quarters, which is characterized by
15000 posterior draws.

4.2 Coverage Level and Relative Width

The estimated coverage levels along with their standard deviations of the PW error bands of
DGP1-4 are given in Table 1. The first row shows the pointwise coverage level, i.e., the fraction
of individual parameters lying within their respective credible intervals. As expected, the
conventional pointwise inference achieves the nominal coverage level for the 68% and 90%
credible intervals, implying that the Monte Carlo design is properly specified and the estimation
procedure is correctly implemented. The coverage levels shown in the rows below answer
the question: what would the effective coverage level be if the economic question requires
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joint error bands, but the applied econometrician naı̈vely reports conventional pointwise error
bands? Even in the mildest situation, when only multivariate dependence is ignored, the
respective coverage level, ΠMV , of the PW error bands is between 26% and 57% for the 68%
error band and between 70% and 85% for the 90% error band. The subsequent rows show
that as the number of ignored structural parameters in the inference procedure increases, the
underestimation of uncertainty when using PW error bands rises dramatically. For example,
DGP1 has the worst TS coverage level, ΠTS, which is 21% and 64% for the 68% and 90% error
bands, respectively. In the most severe case, when MV-TS-CS dependence is ignored, the
estimated coverage level for DGP4 is 5% and 39% for both credibility levels.11

In summary, the PW error band is an appropriate choice for conducting inference about im-
pulse responses only when the economic question does not involve a comparison of multiple
structural parameters simultaneously. If this is the case, the uncertainty is significantly underes-
timated. The loss associated with reporting incorrectly specified error bands is larger for the
68% credible region compared to the 90% credible region.

Table 1
Coverage level of PW error bands

Coverage level 68% PW error band 90% PW error band

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

ΠPW 68.07 67.25 67.63 67.70 90.17 89.47 89.94 89.71
(0.34) (0.29) (0.34) (0.32) (0.22) (0.19) (0.22) (0.21)

ΠMV 44.64 36.18 26.05 57.06 80.00 74.92 69.75 85.31
(0.42) (0.48) (0.46) (0.37) (0.36) (0.41) (0.54) (0.27)

ΠTS 21.23 43.83 31.65 26.34 63.98 75.09 71.82 66.41
(0.40) (0.41) (0.40) (0.42) (0.48) (0.35) (0.42) (0.48)

ΠMV−TS 2.90 17.14 3.24 16.43 36.12 51.98 37.70 56.43
(0.25) (0.44) (0.24) (0.37) (0.67) (0.64) (0.72) (0.54)

ΠMV−TS−CS - - - 4.68 - - - 38.86
(0.28) (0.65)

Notes: Coverage levels of 68% and 90% pointwise credible bands for DGP1, DGP2, DGP3 and DGP4.

Standard deviations computed with bootstrap method are in brackets.

The results of the experiments regarding the joint inference methods for all DGPs are given
in Tables 2 - 5. Each table details the estimated coverage level and average relative width,
along with their standard deviations, for the four different assumptions on the targeted mutual
dependence between the structural parameters: MV, TS, MV-TS, and MV-TS-CS.

First, consider the results for the MV error bands in Table 2. As expected, the Bonferroni’s and
Sidák’s error bands are the among the most conservative measures of joint uncertainty. This
is particularly true for the Bonferroni method, while the Sidák method achieves the nominal
coverage level of 90% for DGP2 and DGP3. Conversely, the sup-t error bands method meets the
nominal rate for all DGPs and both credibility levels, indicating that it effectively summarizes
multivariate estimation uncertainty. The average relative width of the sup-t error bands ranges
from 19% to 65% for the 68% credible region and from 11% to 35% for the 90% credible region.

11DGP1-3 have only one identified shock; thus, the MV-TS-CS coverage level is not defined.
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These results indicate that the MV error bands are not significantly wider than the conventional
PW error bands, suggesting that their use does not incur substantial costs. Additionally, a
comparison of the MV error bands for DGP4 in the 90% credibility region reveals that Sidák’s
error bands have a 92% effective coverage level and the sup-t error band has a 90% effective
coverage level, with average relative widths of 21% and 11%, respectively. This demonstrates
that properly constructed error bands achieving the nominal coverage level can lead to better
uncertainty estimation compared to ad-hoc methods.

Next, examining the MV error bands constructed with the min-max methodology, I find
that the non-calibrated error bands are conservative and tend to produce higher coverage
levels than the nominal credibility level for absolute, quadratic, and angular loss functions.
Furthermore, there are significant differences in the performance of error bands constructed
with these loss functions. Specifically, the angular loss function performs worse than the
absolute loss function, which is strongly dominated by the quadratic loss function. This finding
is surprising, given that Inoue and Kilian (2022) report no significant differences among the
loss functions in their empirical applications. One possible reason for this discrepancy is that
their specifications consider MV-TS-CS uncertainty, which increases the dimensionality of the
problem and diminishes the importance of the selected loss function. This will be evaluated later
in this section when analyzing the simulation results in Table 5. Additionally, it is worth noting
that, despite Inoue and Kilian (2022) proposing the angular loss function to address potential
issues with evaluating vector-valued distances of structural parameters with different scales,
it actually computes the most conservative error bands. Finally, among the non-calibrated
min-max error bands, the Chebyshev loss function consistently achieves the nominal coverage
level, with a relative width economically indistinguishable from that of the sup-t error bands.

Having examined the non-calibrated min-max error bands, I now shift the focus to other
extended routines that implement an intermediate calibration step (i.e., LQO or BDR). Notably,
the Chebyshev loss function achieves the nominal coverage level without implementing LQO
or BDR, and the performance of the error bands in the corresponding rows aligns with the
min-max error bands as the calibration steps are not initiated. For the absolute and quadratic
loss functions, the LQO calibration helps achieve the nominal coverage level, but it fails for the
angular loss function. However, comparing the average relative width of the error bands for
the former two loss functions, the results indicate that these error bands are wider compared to
the sup-t estimations, with differences reaching up to 20 percentage points for some DGPs. On
the other hand, the error bands with BDR calibration not only achieve the nominal coverage
level but also have widths for the absolute and angular loss functions similar to those of the
sup-t error bands. The BDR calibration applied to the min-max error bands with the quadratic
loss function is slightly larger than the sup-t error bands for some DGPs.

In summary, the sup-t, min-max with Chebyshev loss and min-max (BDR) with absolute and
angular loss are good estimators MV uncertainty with very similar performance regarding the
estimated coverage level and average relative width.

The results of the experiments regarding the TS error bands are given in Table 3. The increase
of the number of elements of the structural vector of interest, changes the relative performance
of the joint inference methods. The Bonferorrni’s and Sidák’s error bands become the most
conservative methods, which greatly overestimate the uncertainty about the impulse responses.
In this class of methods, the sup-t error bands is the only one, which achieves the nominal
coverage level. The difference of the average relative width for the TS error bands and the MV
error bands estimated with the sup-t method are large for DGP1 and DGP4, but very similar for
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DGP2 and DGP3. A possible reason for that could be the different identification methodology.
Similarly to the reported results in the previous table, the TS error bands with the min-max error
bands with Chebyshev loss function perform the same as the sup-t error bands even without
a calibration step. The same could not be said for the other loss functions within this class of
joint inference methods. Without calibration step the angular loss is more conservative than the
absolute loss function, which is dominated by the quadratic loss. The LQO calibration method
allows for all error bands to achieve the nominal coverage level with slightly smaller average
relative width for the absolute and quadratic loss functions. The results for the LQO calibration
of the min-max error bands with angular loss function indicate that it is significantly wider than
the sup-t error band. The BDR calibration method, however, also allows the min-max estimator
to achieve the nominal coverage level, but it further decreases the width of the error bands. The
min-max (BDR) with angular loss has similar or slightly wider bands than the sup-t method,
but the absolute and quadratic loss functions already improve significantly on the sup-t error
bands. For example, the difference of the relative width for the 68% credible region between
the min-max (BDR) error bands with absolute loss and the sup-t error bands are between 7 and
14 percentage points.

Table 4 presents the result for analysis of MV-TS joint inference methods. There are no differ-
ences in the relative performance in terms of coverage levels of the different inference methods
caused by the increased amount of structural parameters of interest for the MV-TS error bands
in comparison to the TS error bands. It is worth noting, however, that the increase of the average
relative width does not entirely depends on the number of structural parameters, but also on
the specifics of the data generating processes. In particular the estimate of the 68% TS error
band of the min-max (BDR) method under absolute loss function for DGP1 and DGP2 is 60%
and 24%. Even though the increase of the number of structural parameters for both DGPs in
the case of MV-TS inference is the same, the average relative width changes to 95% and 56%.
The highest change in the average relative width from the TS error bands to the MV-TS error
bands is observed for DGP3 - from 45% to 104%, which is expected since this models has the
largest increase of structural parameters between both error bands. The smallest increase of the
width between both types of error bands is observed for DGP4. The comparison between the
results of the TS and MV-TS error bands show that an economist interested in joint inference
method could observe different width among models depending on the economic question and
the corresponding inference methods, which is selected.

Finally, Table 5 shows the results of the Monte Carlo simulations for MV-TS-CS joint inference,
which is conducted only for DGP4 as it is the only model with more than one identified shock.
The results for that inference type for the 68% credible region indicate again that Bonferroni’s
and Sidák’s method are overestimating the uncertainty, but the sup-t error band achieves the
nominal coverage level at least within 2 standard deviations of the coverage statistics. The min-
max estimators without any calibration step again overestimate the coverage level. The LQO
step could provide sufficiently close estimate, but as already discussed it could be very hard
to achieve stable results especially for fuzzy joint distributions of some structural parameters.
On the other hand, the BDR step could underestimate the uncertainty with approximately
1% depending on the applied loss functions. Even though the simulation exercise gives very
clear results for the performance of the method, the economic implications are insignificant.
Furthermore, the methods tend to achieve the nominal coverage level for the 90% credible
region
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Table 2
Multivariate coverage level (ΠMV) and average relative width (∆MV) of MV error bands

Method 68% MV error band 90% MV error band

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 78.72 63.39 73.49 43.36 75.07 79.64 77.30 44.64 93.18 30.40 90.49 18.22 91.17 39.26 92.47 21.90
(0.37) (0.01) (0.41) (0.01) (0.51) (0.01) (0.33) (0.01) (0.23) (0.01) (0.26) (0.01) (0.32) (0.01) (0.19) (0.01)

Šidák 76.14 57.05 70.51 39.62 71.88 72.57 75.26 39.08 92.94 29.51 90.15 17.73 90.88 38.23 92.31 21.11
(0.39) (0.01) (0.43) (0.01) (0.53) (0.01) (0.35) (0.01) (0.24) (0.01) (0.26) (0.01) (0.32) (0.01) (0.19) (0.01)

sup-t (PQO) 67.78 38.41 67.18 35.61 68.18 65.06 67.75 18.89 90.36 21.08 89.17 16.34 89.69 34.82 89.73 11.16
(0.44) (0.01) (0.44) (0.01) (0.55) (0.02) (0.37) (0.01) (0.27) (0.01) (0.28) (0.01) (0.34) (0.01) (0.22) (0.01)

min-max: absolute loss (median) 88.25 102.33 89.82 81.62 88.62 159.88 76.03 47.25 98.00 64.33 98.17 44.07 97.38 95.38 93.08 32.88
(0.28) (0.03) (0.28) (0.04) (0.36) (0.06) (0.28) (0.02) (0.13) (0.03) (0.13) (0.04) (0.18) (0.04) (0.18) (0.01)

min-max (LQO): absolute loss (median) 68.27 47.26 67.28 41.63 67.20 85.92 67.74 27.17 90.33 27.13 89.49 24.49 89.52 57.02 89.65 19.66
(0.40) (0.02) (0.49) (0.02) (0.55) (0.04) (0.31) (0.01) (0.25) (0.01) (0.28) (0.02) (0.34) (0.04) (0.21) (0.02)

min-max (BDR): absolute loss (median) 67.85 38.97 66.86 35.05 67.80 67.63 67.66 20.63 90.39 21.14 89.24 16.95 89.56 37.19 89.62 13.38
(0.44) (0.01) (0.48) (0.02) (0.58) (0.02) (0.34) (0.01) (0.27) (0.01) (0.31) (0.01) (0.35) (0.01) (0.22) (0.01)

min-max: quadratic loss (mean) 75.69 72.05 77.64 61.13 74.64 117.61 70.20 37.70 93.66 47.52 95.04 36.19 92.33 77.47 90.75 26.64
(0.38) (0.02) (0.44) (0.02) (0.54) (0.03) (0.30) (0.02) (0.20) (0.02) (0.20) (0.02) (0.31) (0.03) (0.20) (0.02)

min-max (LQO): quadratic loss (mean) 68.30 54.17 66.91 43.32 67.13 94.14 67.66 31.49 90.24 35.22 89.46 25.88 89.41 66.68 89.63 22.79
(0.39) (0.02) (0.50) (0.02) (0.58) (0.04) (0.30) (0.02) (0.25) (0.02) (0.29) (0.02) (0.36) (0.04) (0.21) (0.02)

min-max (BDR): quadratic loss (mean) 68.19 43.66 66.78 36.41 67.29 75.89 67.65 24.95 90.24 24.74 89.24 18.25 89.54 45.65 89.60 16.96
(0.42) (0.02) (0.50) (0.02) (0.57) (0.03) (0.31) (0.01) (0.26) (0.01) (0.30) (0.01) (0.35) (0.03) (0.21) (0.02)

min-max: angular loss (median) 99.93 310.81 99.87 132.56 99.93 335.78 99.97 376.96 99.95 151.50 99.92 63.35 99.95 165.21 99.97 187.07
(0.02) (0.15) (0.03) (0.07) (0.03) (0.18) (0.01) (0.25) (0.01) (0.08) (0.03) (0.05) (0.02) (0.10) (0.01) (0.14)

min-max (LQO): angular loss (median) 97.08 171.06 86.99 73.62 95.00 179.40 97.87 195.08 97.08 62.67 91.86 26.69 95.02 66.27 97.87 72.58
(0.14) (0.21) (0.30) (0.12) (0.23) (0.24) (0.09) (0.29) (0.14) (0.13) (0.24) (0.06) (0.23) (0.14) (0.09) (0.17)

min-max (BDR): angular loss (median) 67.65 37.83 67.18 34.92 68.00 64.17 67.72 18.83 90.35 20.84 89.14 16.22 89.67 34.61 89.71 11.09
(0.44) (0.01) (0.46) (0.01) (0.56) (0.02) (0.37) (0.01) (0.27) (0.01) (0.28) (0.01) (0.34) (0.01) (0.22) (0.01)

min-max: Chebyshev loss (median) 67.70 37.91 67.43 35.23 67.96 63.93 67.64 18.23 90.50 20.81 88.99 17.17 89.67 34.83 89.66 12.02
(0.44) (0.01) (0.46) (0.02) (0.56) (0.02) (0.37) (0.01) (0.28) (0.01) (0.30) (0.01) (0.33) (0.01) (0.25) (0.01)

min-max (LQO): Chebyshev loss (median) 67.70 37.91 67.42 35.23 67.96 63.93 67.64 18.23 90.50 20.81 88.99 17.17 89.67 34.83 89.66 12.02
(0.44) (0.01) (0.46) (0.02) (0.56) (0.02) (0.37) (0.01) (0.28) (0.01) (0.30) (0.01) (0.33) (0.01) (0.25) (0.01)

min-max (BDR): Chebyshev loss (median) 67.70 37.91 67.43 35.23 67.96 63.93 67.64 18.23 90.50 20.81 88.99 17.17 89.67 34.83 89.66 12.02
(0.44) (0.01) (0.46) (0.02) (0.56) (0.02) (0.37) (0.01) (0.28) (0.01) (0.30) (0.01) (0.33) (0.01) (0.25) (0.01)

Notes: Multivariate coverage levels (ΠMV ) and average relative width (∆MV ) of 68% and 90% MV credible bands for DGP1, DGP2, DGP3 and DGP4. Standard deviations computed with bootstrap method are in brackets.
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Table 3
Time-simultaneous coverage level (ΠTS) and average relative width (∆TS) of TS error bands

Method 68% TS error band 90% TS error band

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 93.03 147.35 94.03 84.63 96.37 177.70 92.79 165.40 97.83 74.47 97.79 39.61 98.77 92.25 97.36 86.47
(0.25) (0.03) (0.19) (0.03) (0.16) (0.03) (0.24) (0.06) (0.15) (0.02) (0.12) (0.02) (0.11) (0.02) (0.14) (0.03)

Šidák 91.77 140.32 93.13 81.64 95.73 170.31 91.59 156.98 97.73 73.42 97.70 39.14 98.74 91.10 97.23 85.17
(0.29) (0.02) (0.21) (0.03) (0.18) (0.03) (0.25) (0.05) (0.15) (0.02) (0.12) (0.02) (0.11) (0.02) (0.15) (0.03)

sup-t (PQO) 68.07 74.60 66.60 31.71 67.81 59.47 67.74 72.10 90.58 40.35 88.80 17.58 89.67 33.83 89.56 41.20
(0.48) (0.01) (0.43) (0.02) (0.46) (0.03) (0.46) (0.07) (0.31) (0.01) (0.28) (0.01) (0.28) (0.01) (0.28) (0.04)

min-max: absolute loss (median) 78.13 94.48 77.13 46.62 77.06 79.09 81.91 118.89 94.41 60.28 93.17 25.88 93.53 50.74 94.82 72.02
(0.45) (0.02) (0.31) (0.03) (0.44) (0.05) (0.38) (0.10) (0.26) (0.01) (0.20) (0.02) (0.24) (0.03) (0.25) (0.06)

min-max (LQO): absolute loss (median) 68.23 68.00 67.12 29.94 67.47 53.72 67.70 75.90 90.18 44.28 89.56 18.00 89.72 36.28 89.44 47.75
(0.54) (0.01) (0.36) (0.02) (0.48) (0.03) (0.46) (0.09) (0.31) (0.01) (0.26) (0.02) (0.29) (0.02) (0.32) (0.05)

min-max (BDR): absolute loss (median) 67.91 60.27 66.74 24.13 67.16 45.01 67.41 64.55 90.28 35.62 89.23 13.39 89.53 27.64 89.30 37.43
(0.52) (0.01) (0.37) (0.01) (0.47) (0.03) (0.48) (0.08) (0.31) (0.01) (0.25) (0.01) (0.29) (0.01) (0.32) (0.04)

min-max: quadratic loss (mean) 73.80 79.87 74.02 39.25 73.58 66.98 76.19 107.11 92.53 50.33 92.36 22.48 92.28 44.17 92.80 65.87
(0.48) (0.02) (0.33) (0.02) (0.46) (0.04) (0.40) (0.10) (0.28) (0.02) (0.22) (0.02) (0.27) (0.02) (0.25) (0.06)

min-max (LQO): quadratic loss (mean) 68.19 66.13 66.80 27.93 67.39 51.75 67.44 83.69 90.19 42.38 89.42 16.43 89.66 35.34 89.19 52.96
(0.53) (0.02) (0.38) (0.02) (0.50) (0.02) (0.48) (0.10) (0.32) (0.02) (0.27) (0.01) (0.29) (0.02) (0.31) (0.06)

min-max (BDR): quadratic loss (mean) 67.93 60.81 66.51 24.40 67.25 46.14 67.41 72.14 90.03 36.45 89.25 13.19 89.46 28.82 89.28 42.41
(0.53) (0.02) (0.37) (0.01) (0.48) (0.02) (0.49) (0.09) (0.32) (0.01) (0.26) (0.01) (0.29) (0.01) (0.31) (0.05)

min-max: angular loss (median) 78.27 142.13 80.11 84.49 88.28 185.52 78.55 135.78 92.99 86.07 91.49 38.62 95.86 110.96 93.07 91.16
(0.45) (0.09) (0.27) (0.07) (0.25) (0.10) (0.37) (0.11) (0.27) (0.05) (0.19) (0.05) (0.15) (0.07) (0.22) (0.08)

min-max (LQO): angular loss (median) 68.93 113.02 67.19 50.90 69.32 109.68 67.58 100.42 90.14 75.31 89.29 36.00 90.00 79.37 89.39 73.33
(0.52) (0.05) (0.33) (0.05) (0.38) (0.12) (0.48) (0.13) (0.34) (0.04) (0.22) (0.05) (0.23) (0.10) (0.25) (0.07)

min-max (BDR): angular loss (median) 68.39 75.09 66.86 32.21 67.28 60.19 67.21 75.01 90.12 47.43 89.33 24.65 89.39 42.00 89.19 51.20
(0.52) (0.03) (0.36) (0.02) (0.41) (0.03) (0.48) (0.09) (0.32) (0.02) (0.22) (0.03) (0.27) (0.05) (0.28) (0.05)

min-max: Chebyshev loss (median) 67.64 73.13 66.53 31.41 67.40 58.35 67.39 70.33 90.40 39.62 88.81 15.26 89.61 33.35 89.38 39.98
(0.47) (0.01) (0.43) (0.02) (0.45) (0.03) (0.47) (0.06) (0.34) (0.01) (0.27) (0.01) (0.27) (0.02) (0.30) (0.03)

min-max (LQO): Chebyshev loss (median) 67.64 73.13 66.53 31.40 67.40 58.35 67.39 70.33 90.40 39.62 88.81 15.26 89.61 33.35 89.38 39.98
(0.47) (0.01) (0.43) (0.02) (0.45) (0.03) (0.47) (0.06) (0.34) (0.01) (0.27) (0.01) (0.27) (0.02) (0.30) (0.03)

min-max (BDR): Chebyshev loss (median) 67.64 73.13 66.53 31.41 67.40 58.35 67.39 70.33 90.40 39.62 88.81 15.26 89.61 33.35 89.38 39.98
(0.47) (0.01) (0.43) (0.02) (0.45) (0.03) (0.47) (0.06) (0.34) (0.01) (0.27) (0.01) (0.27) (0.02) (0.30) (0.03)

Notes: Time-simultaneous coverage levels (ΠTS) and average relative width (∆TS) of 68% and 90% TS credible bands for DGP1, DGP2, DGP3 and DGP4. Standard deviations computed with bootstrap method are in
brackets.
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Table 4
Multivariate, time-simultaneous coverage level (ΠMV−TS) and average relative width (∆MV−TS) of MV-TS error bands

Method 68% MV-TS error band 90% MV-TS error band

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 94.56 188.45 93.82 100.97 96.80 231.49 94.32 197.52 97.90 97.03 97.44 48.97 98.68 122.56 97.94 104.43
(0.33) (0.03) (0.29) (0.04) (0.26) (0.04) (0.25) (0.07) (0.21) (0.02) (0.22) (0.03) (0.14) (0.03) (0.16) (0.04)

Šidák 93.18 181.85 93.10 98.46 96.10 224.54 93.44 189.22 97.86 96.03 97.34 48.58 98.66 121.38 97.83 103.13
(0.36) (0.03) (0.30) (0.04) (0.29) (0.04) (0.26) (0.07) (0.21) (0.02) (0.22) (0.03) (0.15) (0.03) (0.16) (0.04)

sup-t (PQO) 68.70 113.68 66.42 60.73 67.10 117.81 67.80 92.41 90.40 60.75 88.02 30.32 88.28 64.54 89.44 52.35
(0.70) (0.02) (0.60) (0.02) (0.68) (0.03) (0.50) (0.07) (0.42) (0.02) (0.42) (0.01) (0.41) (0.02) (0.31) (0.04)

min-max: absolute loss (median) 87.14 155.65 84.06 88.39 81.24 165.08 79.76 128.67 96.54 87.67 95.68 46.13 94.32 97.53 93.96 77.69
(0.50) (0.05) (0.45) (0.06) (0.53) (0.07) (0.41) (0.10) (0.28) (0.03) (0.27) (0.04) (0.35) (0.06) (0.29) (0.06)

min-max (LQO): absolute loss (median) 67.58 106.37 66.82 63.64 66.94 121.28 67.80 92.76 90.26 61.85 88.76 35.69 89.76 76.83 89.34 57.80
(0.66) (0.03) (0.60) (0.03) (0.74) (0.06) (0.52) (0.09) (0.47) (0.02) (0.38) (0.03) (0.44) (0.04) (0.33) (0.05)

min-max (BDR): absolute loss (median) 66.78 94.75 66.10 55.48 65.88 104.31 67.69 79.77 89.66 52.97 88.42 29.14 88.32 60.62 88.99 47.07
(0.66) (0.02) (0.61) (0.03) (0.69) (0.04) (0.51) (0.08) (0.47) (0.02) (0.35) (0.02) (0.43) (0.03) (0.36) (0.04)

min-max: quadratic loss (mean) 78.06 141.39 78.96 79.84 73.44 150.64 75.45 122.26 94.28 81.43 94.76 43.52 91.38 93.18 92.28 74.50
(0.59) (0.04) (0.50) (0.04) (0.72) (0.06) (0.42) (0.10) (0.38) (0.03) (0.25) (0.03) (0.42) (0.04) (0.29) (0.06)

min-max (LQO): quadratic loss (mean) 67.46 116.92 66.64 62.93 66.80 131.38 67.24 101.23 90.34 69.04 88.96 35.48 89.12 86.47 88.94 63.21
(0.65) (0.04) (0.62) (0.03) (0.72) (0.06) (0.51) (0.09) (0.42) (0.03) (0.40) (0.03) (0.45) (0.05) (0.33) (0.06)

min-max (BDR): quadratic loss (mean) 66.62 100.77 66.28 56.32 65.64 113.07 67.20 86.85 89.94 56.80 88.68 29.53 88.68 68.51 88.75 51.47
(0.68) (0.03) (0.61) (0.03) (0.77) (0.05) (0.54) (0.08) (0.46) (0.02) (0.41) (0.02) (0.45) (0.04) (0.35) (0.05)

min-max: angular loss (median) 86.30 191.84 74.94 87.93 81.98 201.12 75.39 135.15 95.84 106.46 92.62 46.84 94.00 114.76 92.00 85.82
(0.52) (0.09) (0.53) (0.06) (0.60) (0.14) (0.44) (0.11) (0.29) (0.06) (0.34) (0.05) (0.34) (0.11) (0.28) (0.08)

min-max (LQO): angular loss (median) 68.64 137.75 66.94 76.22 66.96 155.50 67.73 110.36 89.84 84.36 88.74 42.36 89.54 98.53 89.16 73.43
(0.68) (0.06) (0.60) (0.05) (0.72) (0.13) (0.51) (0.12) (0.43) (0.05) (0.39) (0.04) (0.47) (0.12) (0.33) (0.07)

min-max (BDR): angular loss (median) 67.82 104.37 66.48 64.30 65.86 118.21 67.27 89.41 89.42 59.87 88.56 35.02 89.00 71.20 88.74 56.80
(0.63) (0.02) (0.59) (0.04) (0.70) (0.08) (0.51) (0.10) (0.44) (0.02) (0.40) (0.03) (0.48) (0.07) (0.33) (0.06)

min-max: Chebyshev loss (median) 68.48 111.33 66.52 56.96 66.88 115.04 67.12 88.83 91.16 59.95 88.34 29.63 88.96 64.41 89.53 51.34
(0.72) (0.02) (0.56) (0.02) (0.64) (0.03) (0.53) (0.06) (0.42) (0.01) (0.44) (0.01) (0.44) (0.02) (0.36) (0.03)

min-max (LQO): Chebyshev loss (median) 68.48 111.33 66.52 56.96 66.88 115.04 67.12 88.83 91.16 59.95 88.34 29.63 88.96 64.41 89.53 51.34
(0.72) (0.02) (0.56) (0.02) (0.64) (0.03) (0.53) (0.06) (0.42) (0.01) (0.44) (0.01) (0.44) (0.02) (0.36) (0.03)

min-max (BDR): Chebyshev loss (median) 68.48 111.33 66.52 56.96 66.88 115.04 67.12 88.83 91.16 59.95 88.34 29.63 88.96 64.41 89.53 51.34
(0.72) (0.02) (0.56) (0.02) (0.64) (0.03) (0.53) (0.06) (0.42) (0.01) (0.44) (0.01) (0.44) (0.02) (0.36) (0.03)

Notes: Multivariate, time-simultaneous coverage levels (ΠMV−TS)and average relative width (∆MV−TS) of 68% and 90% MV-TS credible bands for DGP1, DGP2, DGP3 and DGP4. Standard deviations computed with
bootstrap method are in brackets.
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Table 5
Multivariate, time-simultaneous, cross-shock coverage level (ΠMV−TS−CS) and average relative

width (∆MV−TS−CS) of MV-TS-CS error bands

Method 68% MV-TS-CS error band 90% MV-TS-CS error band

DGP4 DGP4

Π ∆ Π ∆

Bonferroni 94.68 228.52 98.32 121.96
(0.28) (0.08) (0.17) (0.05)

Šidák 93.42 220.37 98.28 120.68
(0.32) (0.08) (0.17) (0.05)

sup-t (PQO) 67.16 122.92 88.94 68.65
(0.66) (0.07) (0.41) (0.03)

min-max: absolute loss (median) 84.86 169.29 95.08 97.11
(0.54) (0.15) (0.32) (0.06)

min-max (LQO): absolute loss (median) 66.98 115.07 89.06 68.73
(0.66) (0.09) (0.44) (0.05)

min-max (BDR): absolute loss (median) 65.82 104.42 88.26 59.56
(0.71) (0.09) (0.45) (0.05)

min-max: quadratic loss (mean) 77.58 156.07 93.32 91.44
(0.57) (0.13) (0.36) (0.07)

min-max (LQO): quadratic loss (mean) 67.64 125.59 88.78 75.51
(0.68) (0.10) (0.45) (0.05)

min-max (BDR): quadratic loss (mean) 66.58 111.80 88.32 64.29
(0.68) (0.09) (0.46) (0.05)

min-max: angular loss (median) 78.22 182.89 92.84 114.39
(0.59) (0.21) (0.37) (0.13)

min-max (LQO): angular loss (median) 67.00 143.98 88.80 96.16
(0.68) (0.18) (0.49) (0.13)

min-max (BDR): angular loss (median) 66.32 118.35 87.96 73.46
(0.70) (0.12) (0.46) (0.08)

min-max: Chebyshev loss (median) 66.84 116.46 89.56 66.04
(0.76) (0.07) (0.42) (0.03)

min-max (LQO): Chebyshev loss (median) 66.84 116.46 89.56 66.04
(0.76) (0.07) (0.42) (0.03)

min-max (BDR): Chebyshev loss (median) 66.84 116.46 89.56 66.04
(0.76) (0.07) (0.42) (0.03)

Notes: Multivariate, time-simultaneous, cross-shock coverage levels (ΠMV−TS−CS) and average relative width
(∆MV−TS−CS) of 68% and 90% MV-TS-CS credible bands for DGP1, DGP2, DGP3 and DGP4. Standard deviations
computed with bootstrap method are in brackets.

4.3 Shape and Comovement

This section discusses whether Bayesian estimation is capable of preserving the joint distri-
butions of non-linear transformations, such as the impulse response functions, beyond just
achieving the desired coverage level for multiple parameters simultaneously. This aligns with
the argument of Inoue and Kilian (2022), who advocate for using the lowest posterior risk joint
credible set to describe the shape and comovement of impulse responses rather than focusing
solely on error bands.

Talts et al. (2020) show that if the prior of the Bayesian estimation procedure is specified to
coincide with the distribution of the true parameters of the data-generating process, then the
posterior distribution is the same as the prior distribution. The following rank statistics is used
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to evaluate if both distributions coincide:

r(θn,s,h) =
D
∑
d=1

1[(θn,s,h)(d∶c) < (θn,s,h)(c)], for n = 1, . . . , N, s = 1, . . . , S and h = 1, . . . , H,

where 1[⋅] is the indicator function defined over (θn,s,h)(c), (θn,s,h)(d∶c), which denote for each
Monte Carlo iteration c, the true impulse response coefficients and the d-th posterior draw,
respectively. The distribution of the rank statistics is uniform across the integers [0, D] if and
only if the sampling procedure is correctly implemented. The rank statistics proposed by
Talts et al. (2020) is applicable only to univariate random variables and allows to approach the
question if each individual parameter is sampled correctly, but not if their joint distribution
is approximated sufficiently well. Since evaluation of the marginal distributions involves
significant amount of histograms and also this question is not the main focus of the study, then
the analysis will turn towards the ability of the estimation to approximate the joint distributions
of the structural parameters.

Thorarinsdottir et al. (2016) proposes several vector-valued loss statistics, which are used
to evaluate the multivariate distributions of different forecasting procedures applied in the
context of weather forecasting.12 Their comparative analysis shows that the best performing
measures are the band depth and average rank. The analysis in this section relies on the
latter statistics. Starting with any vector of stacked impulse responses θ ∈ RK, the set of
vectors S = {(θ)(1∶c), (θ)(2∶c), . . . , (θ)(D∶c), (θ)(c)} is the backbone of the derivation. The first
M elements of S denote draws from the posterior of this particular Monte Carlo iteration, c,
and the last element denote the true vector of structural parameters. The prerank of the j-th
coordinate of θ in S is given by:

ruS ((θj)(i∶c)) =
K
∑
j=1

1((θj)(d∶c) ≤ (θj)(i∶c)) for i = 1,⋯, D + 1.

Finally, the average rank statistic is simply the average over the univariate ranks

rS ((θ)(i∶c)) =
1
K

K
∑
j=1

ruS ((θj)(i∶c)) for i = 1,⋯, D + 1,

where ties are resolved at random. The resulting rank of observation (θ)(D+1∶c) in S is uniform
across the integers [0, D + 1] if the elements of S are independent and identically distributed
(see Thorarinsdottir et al. (2016)).

For simplicity in presenting the results, average rank statistics are calculated for three types of
vectors of structural parameters: TS, MV-TS, and MV-TS-CS. The MV vector of stacked impulse
responses is excluded because it involves summarizing multiple quantities for each data
generating process (DGP) and is already implicitly contained in two of the three specifications
considered in the analysis. Following this, histograms are constructed to assess whether the
statistics are uniformly distributed. This is done by checking if the bins fall within the 0.005 and
0.995 percentiles of a Binomial(C, 1/B) distribution, where C represents the number of Monte
Carlo iterations and B the number of bins. Under uniformity, only one bin in a hundred should
fall outside these bounds (see Talts et al. (2020)).

12A similar procedure is proposed by Knüppel et al. (2022) to evaluate the joint distribution of forecasts in Bayesian
VAR models.
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If the histogram of the average rank statistics is ∪-shaped, the joint distribution of the impulse
response function is underdispersive. On the other hand, if the histogram of the average rank
statistics is ∩-shaped, the joint distribution of the impulse response functions is overdispersive.
The average rank statistics under TS inference for all data generating processes is shown in
Figure C.1 of Appendix C. For each DGP there is one histogram for every impulse response
function - 3 for DGP1 and DGP2, 4 for DGP3 and 4 for DGP4. The bins in all histograms are
within the bounds specified by the appropriate binomial distribution, therefore there is no
evidence to reject the null hypothesis of uniformity. Analogously, the number of average rank
statistics histograms in case of MV-TS inference for DGP1, DGP2 and DGP3 is 1 and for DGP4 is
2, all of which are presented in Figure C.2 of Appendix C. The bins of those histograms are also
fully contained within the percentiles of the specified Binomial distribution, which implies that
there is no evidence against the uniformity of the statistics. The same conclusion follows the
analysis of the single histogram in the case of MV-TS-CS inference for DGP4 shown in Figure
C.3 of Appendix C.

In summary, the uniform distribution of the average rank statistics implies that standard
Bayesian inference about impulse responses is not only capable of achieving the targeted
probability content jointly, but also it preserves shapes and comovements of impulse responses.
This means that the lowest posterior risk joint credible set is very powerful tool to evaluate
different economic theories as suggested by Inoue and Kilian (2022). On the other hand, the
sup-t joint inference method and the respective draws contained within the estimated error
bands do not necessarily have this property as it does not evaluate the distance across draws.
This question along with the contribution of the loss function in the estimation of the lowest
posterior risk set is left for future study.

5 Empirical Applications

Having established the importance of constructing context-specific error bands, this section
highlights the benefits of the discussed methods for practitioners and policymakers. First, I
demonstrate the implications of conducting joint inference on the fiscal multiplier in a typical
SVAR model. In the second subsection, I explore the similarities between impulse response
functions and forecasts, applying joint inference methods in an out-of-sample forecasting
exercise for inflation and real GDP growth in the United States and the euro area.

5.1 Fiscal Multiplier

There are periods when fiscal actions by governments become the main driver of economic
activity. For example, the fiscal expenditure and revenue responses to the economic implications
of the Covid-19 pandemic in September 2020 amounted to 9 percent of GDP in advanced
economies (see Lacey et al. (2021)). During such times, the fiscal multiplier becomes a key metric
for macroeconomic forecasting and policy design, as it quantifies the impact of discretionary
fiscal policy on output. Blanchard and Leigh (2013) argue that underestimation of fiscal
multipliers led to persistent forecast errors of output for European economies in the beginning
of the 2010s, especially in the early stages of the austerity measures implementation. Although
the immediate consequences are evident, the failure to properly quantify the fiscal multiplier
when implementing fiscal policy could have adverse long-term implications for the economy.
For example, fiscal tightening can worsen the debt ratio in the short run, potentially leading the
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government to implement additional rounds of tightening in an attempt to stabilize the debt
(e.g., Eyraud and Weber (2013)). As a result, confidence in the fiscal authority decreases, and
the economy may enter a vicious cycle of slow growth, deflation, and further tightening.

In the context of SVARs, the fiscal multiplier is usually computed as the ratio of the cumulative
sum of the GDP response to the cumulative sum of the government expenditure response to an
exogenous government expenditure shock (see Ramey (2019)). Identifying these shocks is not
straightforward with sign restrictions, but DGP1 considered in the previous section provides
a good example of a fiscal model identified with short-run exclusion restrictions. It consists
of three endogenous variables ordered in the vector as follows: government expenditure, real
GDP, and government revenue. The fiscal shock is identified through Cholesky decomposition
of the variance-covariance matrix, which implies that a government expenditure shock does
not affect real GDP and government revenues contemporaneously. In particular, using the
previously introduced notation, the fiscal multiplier is given by

mh =
∑h

i=1 θ2,1,i

∑h
i=1 θ1,1,i

⋅ (Y/G),

where θ2,1,i denotes the impulse response of GDP in period i to an exogenous shock in fiscal
expenditures, θ1,1,i denotes the impulse response of government expenditure in period i with
respect to the same shock, and Y/G denotes the average GDP-to-government-expenditure ratio
over the entire estimation sample. Therefore, the fiscal multiplier is a non-linear function of
two variables that are accumulated over time. If the error bands around the fiscal multiplier are
to be constructed by considering the specifics of the economic question, they need to achieve
multivariate and time-simultaneous coverage. In this case, the vector of structural parameters
consists of the fiscal multiplier and the responses of government expenditure and real GDP
over 20 quarters, but does not include the response of government revenue. In particular, the
vector is given by:

θ = (m1, m2, . . . , mH , θ1,1,1, θ1,1,2, . . . , θ1,1,H , θ2,1,1, θ2,1,2, . . . , θ2,1,H) .

The model is estimated with US data from 1939:Q1 to 2015:Q4 and Figure 3 illustrates the
pointwise and joint error bands. The conventional pointwise error bands show that the fiscal
multiplier might be higher than 1 only after 15 quarters with 68% probability and after 13
quarters with 90% probability. As expected, the Bonferroni and Sidák error bands are the most
conservative. Since these methods tend to overstate the uncertainty, their implications are less
important. On the other hand, the error bands computed with the sup-t method are wider even
in comparison to the uncalibrated min-max error bands; therefore, the analysis will focus on
the min-max (BDR) specification, as it was shown in the Monte Carlo exercise that this method
achieves the desired coverage level.

A key observation is that the LQO calibration method generates error bands that are nearly
identical to those produced by the BDR method. This similarity between the two methods
highlights that the choice of calibration approach may not significantly affect the overall
conclusions about the fiscal multiplier’s behavior. Moreover, when comparing the width of
the LQO and BDR error bands to the more conventional pointwise error bands, the min-max
(BDR) bands are, on average, significantly wider—91% for the 68% credibility level and 51% for
the 90% level. This additional width reflects the more conservative nature of the BDR method,
suggesting a greater level of uncertainty about the multiplier’s true value. Importantly, the joint
error bands demonstrate that the multiplier is likely to exceed 1 earlier than previously expected,
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containing the value of 1 within the credible region 4 quarters sooner for both credibility levels.
This outcome calls for a re-assessment of fiscal policy, as it implies that government spending
could have a more immediate and pronounced effect on output than standard pointwise error
bands suggest. The need for careful policy design is thus underscored, as overlooking these
nuances in error band width could lead to misinformed decisions regarding the timing and
magnitude of fiscal interventions.

5.2 Forecasting

Structural impulse responses in VAR models are designed to trace the effect of a one-time shock
to one of the variables on all other variables in the system over time. They provide detailed
insights into the dynamic interactions within the system, illustrating how a shock propagates
and influences each variable across different periods. In contrast, forecasts in VAR models
aim to predict the future values of the variables based on their historical relationships. More
formally, as shown in Section 3, any VAR model can be represented as:

yt+l = JAl+1Yt−1 +
l
∑
b=0

JAbJ′ut+l−b.

Therefore, the l-periods ahead forecast is given by:

E (yt+l ∣yt, yt−1, . . . ) = JAl+1Yt−1

and the l-periods ahead IRF is defined as

E (yt+l ∣ut = Bεt, yt, yt−1, . . . ) = JAl+1Yt−1 + JAlJ′Bεt.

This illustrates that impulse responses and forecasts in time series models are closely related,
implying that methods used for joint inference on these quantities are likely to perform similarly.
Given these similarities, the methods for joint inference are applied in a pseudo-out-of-sample
forecasting exercise, despite not being formally evaluated in the simulation exercises of this
paper.

For this exercise, I use two time series models known for their strong forecasting performance.
First, I consider a time-varying bivariate model of inflation and survey-based inflation expect-
ations proposed by Chan et al. (2018) (henceforth CCK18). In this model, the inflation gap
is defined as the difference between actual inflation and the unobserved inflation trend. The
inflation gap is assumed to follow an AR(1) process, while the inflation trend is modeled as a
random walk. Additionally, there is a linear relationship between the survey-based inflation
expectations and the inflation trend.13

The second model used in the forecasting exercise is a standard time-varying VAR with
stochastic volatility, originally proposed by Primiceri (2005) and later refined by Del Negro
and Primiceri (2015) (henceforth DP15). This VAR model includes three endogenous variables:
the annualized quarter-on-quarter real GDP growth rate, the annualized quarter-on-quarter
headline inflation rate, and the 1-year government bond yield. The performance of the joint
inference methods in the forecasting exercise is evaluated by constructing TS error bands for
inflation forecasts using CCK18 and TS and MV-TS error bands for inflation and GDP growth
rates using DP15.

13Further details about the model can be found in Chan et al. (2018).
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Both models are estimated using U.S. and euro area data, with samples starting in 1982:Q1 and
1999:Q1, respectively. The forecasts are evaluated through an expanding sample pseudo-out-of-
sample forecasting exercise, beginning in 2010:Q1 and concluding in 2019:Q4.14 The inflation
rate is calculated using the Personal Consumption Expenditure (PCE) price index for the U.S.
and the Harmonized Index of Consumer Prices (HICP) for the euro area. For the U.S., the
survey-based inflation expectations are derived from the 10-year expected inflation estimated
by the Federal Reserve Bank of Cleveland, while for the euro area, the 5-year expected inflation
is reported by the Survey of Professional Forecasters of the European Central Bank. For DP15,
in addition to the inflation rate, I use the 1-year U.S. Treasury bond yield and the 1-year German
government bond yield, along with the real quarter-on-quarter GDP growth rates for both the
U.S. and euro area.

Before analyzing the results of the entire sample for each joint inference method, I first focus on
the graphical comparison of the error bands. In the aftermath of the Covid pandemic, inflation
in both the U.S. and the euro area experienced a strong and persistent increase, driven by a
combination of supply and demand factors. These effects were further exacerbated by the
energy crisis triggered by Russia’s invasion of Ukraine in February 2022.

A simple projection conducted at the beginning of 2022:Q2 using CCK18 for the U.S. and euro
area is presented in Figure 4. The figures for the TS error bands (calculated with min-max
estimator under absolute loss function) in the U.S. show that, even after such a significant
disruption, the inflation recovery path would have been well-contained within the 30% credible
band, except for the second quarter of 2022. This is somewhat surprising, as the model is
generally expected to produce better short-term forecasts. On the other hand, the European
economy was more severely affected by energy supply disruptions, causing inflation to remain
elevated for an extended period. As a result, the PW error band for the headline inflation rate
in the euro area is less useful as a measure of the recovery path. As the econometric model is
trend-reverting by nature, both PW and TS error band indicate downside risk for the inflation,
but the realized path of the series is well contained only within the TS error bands for both
countries.

The results of the projection exercises conducted with the DP15 model are presented in Figure
5. It shows a comparison between the PW and MV error bands (using a calibrated min-max
estimator under absolute loss function) of the joint projections of 2-quarters ahead inflation
and GDP q-o-q growth rates during the period 2010:Q1-2019:Q4. The results show that the
90% MV error bands are not much wider in comparison to the corresponding PW error bands,
but the difference between both starts to increase as the credibility level falls. This indicates
that underestimation of uncertainty for lower credibility levels will possibly be much larger. A
possible cause for that is the nature of the projected variables, namely growth rates. A further
important implication of the calibration step implemented for the min-max estimators is that
it stabilizes the results across different initialization of the forecasting exercises. This is not
caused by not converged estimation procedure, but rather infeasible representation of the joint
distribution function.

The coverage rates of the PW error bands for the CCK18 model are presented in Appendix
D, and in particular Table D.1 for United States and D.2 for the euro area. The results of the
out-of-sample forecasting exercise reveal that even the PW error bands for United States slightly
overestimate the uncertainty especially for credible levels of 30% and 60%. On the other hand,
the euro area results indicate much better performance of the model. Nonetheless, if the applied

14The sample size ends in 2019 to simplify the econometric modeling of the post-Covid heteroskedasticity.
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researcher reports PW error bands, but requires TS inference the uncertainty will be significantly
underestimated. The TS error bands evaluated against TS coverage levels are presented in
Figure D.3 and D.4. The results indicate same conclusions regarding the performance of the
models as for the error bands of the IRFs evaluated with the Monte Carlo exercises. The
difference, however, is driven by the general (pointwise) forecasting performance of the model
for the U.S. and euro area inflation projections. Furthermore, the TS error bands for 8-quarters
ahead and smaller credibility level are significantly wider than the PW equivalent, which could
make them inapplicable in practical applications.

Finally, I evaluate the results of the out-of-sample exercise of the DP15 model. The PW error
bands evaluated under PW, MV and TS coverage statistics are shown in Table D.5 and D.6.
Both table indicate much better PW coverage of the inflation forecasts in comparison to the
GDP growth. Furthermore, there is also difference in the performance across countries - with
the projections for United States performing slightly better in comparison to the euro area.
The coverage levels of the MV and TS again indicate that the PW error bands are inadequate
representations of the joint uncertainty.

The results for the TS error bands are presented in Table D.7 and D.8. As expected the perform-
ance of the U.S. forecasting is slightly better. The coverage rate of the min-max estimators under
absolute, quadratic and angular loss functions even with BDR calibration step significantly
worse in comparison to the Chebyshev loss functions. The estimates under the latter loss
function are also significantly tighter. For example, U.S. results indicate that the 60% error
band for h = 4 and GDP growth rate (i.e., y2) estimated with min-max estimator under absolute
loss function with BDR calibration covers 90% and is 188% of the PW error band. On the
other hand the same measures under Chebyshev loss are 79% and 83%. The results in both
tables (for United States and euro area) show similar performance in terms of magnitudes of
the Chebyshev loss function. The performance of the sup-t error bands is comparable to the
Chebyshev min-max estimator. The results for the MV error bands are shown on Table D.9 for
United States and Table D.10 for the euro area. As the MV error bands involve less elements to
conduct joint inference about, the performance of the min-max estimator under the absolute
and Chebyshev loss are comparable among each other but also the sup-t estimator is good
alternative.

In summary, the joint error bands about the forecasts have similar performance in comparison
to the joint error bands about the IRFs. Since this represents a real-world application rather
than an exercise in simulated environment, the performance of the models even in conventional
pointwise sense is rather mixed. The results, however, indicate that the applied researcher
could use either of the methods - sup-t, min-max under absolute loss with BDR calibration or
plain min-max under Chebyshev loss and report the other error bands in robustness exercises.
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Figure 3
Pointwise and joint inference about the fiscal multiplier
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Notes: The lines depict pointwise and MV-TS joint error bands for government expenditure, gross
domestic product, and the fiscal multiplier. For the sake of simplicity, the min-max estimators are
computed only with absolute loss function. The figures in the left column illustrate the results for the
68% credible region, while the figures in the right column illustrate the results for the 90% credible
region.
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Figure 4
CCK18: inflation forecasts for United States and the euro area in 2022:Q1
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Notes: The shaded areas depict pointwise and TS joint error bands for inflation forecasts of the CCK18
model. The TS joint error bands are computed with min-max (BDR) and absolute loss function. Subfigure
(a) shows the results for United States and subfigure (b) shows the results for the euro area. The models
are estimated with data up until 2022:Q1.
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Figure 5
DP15: 2-quarters ahead inflation and gross domestic product forecasts for United States and

the euro area in 2010:Q1-2019:Q4
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(a) United States
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(b) euro area

Notes: The shaded areas and the dashed lines depict pointwise and MV joint error bands for 2-quarters
ahead forecasts of inflation and gross domestic product of DP15. The MV joint error bands are computed
with min-max (BDR) and absolute loss function. Subfigure (a) shows the results for United States and
subfigure (b) shows the results for the euro area.
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6 Conclusion

This paper highlights the critical need to accurately quantify uncertainty in impulse responses
and forecasts when using VAR models. I discuss the construction of context-specific error
bands, tailored to the economic question at hand, as different inquiries may require distinct
set of structural parameters or forecasts to effectively capture the underlying uncertainty.
Through series of simulation experiments, I demonstrate that conventional pointwise quantiles
significantly underestimate the uncertainty in cases that require simultaneous inference about
multiple parameters. The results illustrate that joint inference methods, such as the sup-t (see
Montiel Olea and Plagborg-Møller (2019)) and min-max (see Inoue and Kilian (2022) and Akram
et al. (2016)) estimators, offer substantial improvements in achieving the desired coverage levels
across horizons and variables, compared to pointwise methods.

The joint error bands, however, are considerably wider, especially for economic questions in-
volving multiple variables and horizons. These findings underline the potential risks associated
with relying on traditional pointwise methods, which may lead to overly confident conclusions.
On the other hand, the joint inference methods I evaluate provide a more reliable reflection of
the underlying uncertainty, making them suitable for applied research where precise estimation
of impulse responses and forecasts is crucial. This is particularly relevant for policy makers,
when understanding the full scope of uncertainty is essential for informed decision-making.

Moreover, the carefully designed simulation exercise reveals that the min-max estimators,
which rely on vector-valued loss functions can be overly conservative. Contrary to Inoue and
Kilian (2022), I contend that the choice of the loss function plays a crucial role in determining
the width of the error bands, and applied econometricians must be meticulous in selecting
it. For example, the angular loss function consistently performed the worst, producing the
widest error bands. In contrast, calibrated versions of the min-max estimator with quadratic or
absolute loss functions performed much better, offering narrower bands while still achieving
the desired coverage. Notably, the Chebyshev loss function proposed by Akram et al. (2016)
stands out, as it achieves the target coverage level straight off the shelf, without requiring any
additional calibration steps.

In addition, this study introduces simulation-based calibration to the field of macroeconometrics
- a technique commonly used in other areas of econometrics to assess the performance of
Bayesian estimators. Specifically, it allows for evaluating whether the posterior distribution is
properly sampled by the proposed algorithm and the implemented software (see Gelman et al.
(1996) and Talts et al. (2020)).

Unfortunately, the post-Covid period is characterized by increased volatility, resulting in
excessively wide error bands. Consequently, the implications of this paper are less appealing
for practitioners and policymakers. However, understating uncertainty is undesirable when
investigating structural relationships or producing robust economic projections. Therefore,
applied economists must carefully model heteroskedasticity (see Lenza and Primiceri (2022)
and Carriero et al. (2024)) and rely on more precise estimation techniques. These methods
could relate to the identification methodology—for example, using narrative information to
shrink error bands with shocks identified via sign restrictions (Antolı́n-Dı́az and Rubio-Ramı́rez
(2018)) or improving reduced-form estimates by estimating economic relationships in data-rich
environment (Kerssenfischer (2019)).
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Appendix A Data

Figure A.1
DGP1 and DGP2: endogenous variables
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Figure A.2
DGP3: endogenous variables
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Figure A.3
DGP4: endogenous variables
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Appendix B Model Simulations

Figure B.1
DGP1: simulated IRFs

Notes: Blue solid lines depict IRFs simulated from the data generating process.

Figure B.2
DGP2: simulated IRFs

Notes: Blue solid lines depict IRFs simulated from the data generating process.
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Figure B.3
DGP3: simulated IRFs

Notes: Blue solid lines depict IRFs simulated from the data generating process.

Figure B.4
DGP4: simulated IRFs

Notes: Blue solid lines depict IRFs simulated from the data generating process.
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Appendix C Shape and Comovement

Figure C.1
Average rank statistics of the TS relation
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Notes: Blue bars denote the average rank. The red solid lines denote the 0.005 and 0.995 percentiles of Binomial(5000, 1/20)
distribution.
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Figure C.2
Average rank statistics of the MV-TS relation
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Notes: Blue bars denote the average rank. The red solid lines denote the 0.005 and 0.995 percentiles of Binomial(5000, 1/20)
distribution.

Figure C.3
Average rank statistics of the MV-TS-CS relation
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Notes: Blue bars denote the average rank. The red solid lines denote the 0.005 and 0.995 percentiles of Binomial(5000, 1/20)
distribution.
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Appendix D Out-of-sample Forecasting Exercise

Table D.1
CCK18: pointwise (ΠPW) and time-simultenous (ΠTS) coverage level of PW error bands for

United States

Coverage level 30% PW error band 60% PW error band 90% PW error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

ΠPW 35,90 46,15 48,72 74,36 82,05 69,23 92,31 92,31 84,62

ΠTS 10,26 2,56 0,00 53,85 38,46 15,38 89,74 82,05 61,54

Notes: Pointwise (ΠMV ) and time-simultenous (ΠTS) coverage levels of 68% and 90% PW credible bands for 2,
4, and 8 quarters ahead out-of-sample headline inflation forecast in United States using CCK18.

Table D.2
CCK18: pointwise (ΠPW) and time-simultenous (ΠTS) coverage level of PW error bands for

euro area

Coverage level 30% PW error band 60% PW error band 90% PW error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

ΠPW 20,51 30,77 30,77 61,54 53,85 51,28 94,87 94,87 82,05

ΠTS 10,26 2,56 0,00 35,90 12,82 5,13 87,18 79,49 48,72

Notes: Pointwise (ΠMV ) and time-simultenous (ΠTS) coverage levels of 68% and 90% PW credible bands for 2,
4, and 8 quarters ahead out-of-sample headline inflation forecast in the euro area using CCK18.
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Table D.3
CCK18: time-simultaneous coverage level (ΠTS) of TS error bands for United States

Method 30% TS error band 60% TS error band 90% TS error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 69,23 150,53 79,49 277,81 61,54 402,48 89,74 57,36 82,05 111,04 66,67 165,82 92,31 23,69 84,62 47,61 79,49 74,29

Šidák 46,15 98,75 66,67 207,18 61,54 320,69 82,05 48,15 79,49 97,35 61,54 149,90 92,31 22,87 84,62 46,39 79,49 72,65

sup-t (PQO) 43,59 87,74 61,54 176,93 61,54 262,24 82,05 42,59 79,49 84,56 61,54 125,44 92,31 20,51 84,62 41,01 76,92 62,25

min-max: absolute loss (median) 74,36 160,78 82,05 393,17 69,23 554,43 89,74 98,94 84,62 219,72 82,05 289,94 94,87 67,20 100,00 120,21 94,87 149,65

min-max (LQO): absolute loss (median) 43,59 87,37 61,54 178,51 58,97 265,51 79,49 42,71 79,49 84,24 61,54 129,01 89,74 20,57 84,62 41,80 79,49 65,26

min-max (BDR): absolute loss (mean) 43,59 87,44 58,97 176,70 61,54 261,57 82,05 42,47 79,49 84,10 61,54 125,29 92,31 20,50 84,62 40,99 74,36 62,78

min-max: quadratic loss (mean) 48,72 109,75 79,49 250,79 61,54 394,66 89,74 59,05 82,05 131,54 69,23 205,40 94,87 33,76 87,18 73,08 89,74 109,21

min-max (LQO): quadratic loss (mean) 43,59 87,56 58,97 177,11 58,97 263,23 84,62 42,48 79,49 84,49 61,54 126,34 89,74 20,63 84,62 40,88 76,92 63,80

min-max (BDR): quadratic loss (median) 43,59 87,53 58,97 176,62 61,54 261,34 82,05 42,47 79,49 84,20 61,54 125,36 89,74 20,49 84,62 40,97 74,36 62,61

min-max: angular loss (median) 84,62 745,85 71,79 754,24 61,54 856,82 84,62 333,78 79,49 361,90 69,23 439,05 92,31 189,24 87,18 200,65 100,00 226,73

min-max (LQO): angular loss (median) 76,92 456,24 53,85 408,06 46,15 620,34 79,49 152,54 74,36 300,67 61,54 321,41 92,31 128,58 84,62 142,26 69,23 149,94

min-max (BDR): angular loss (median) 38,46 116,17 46,15 250,05 51,28 335,85 79,49 75,80 74,36 124,34 61,54 151,37 89,74 29,16 84,62 47,31 71,79 67,51

min-max: Chebyshev loss (median) 43,59 87,73 58,97 177,02 58,97 262,34 82,05 42,45 79,49 84,42 61,54 125,52 92,31 20,46 84,62 40,93 76,92 62,80

min-max (LQO): Chebyshev loss (median) 43,59 87,73 58,97 177,02 58,97 262,34 82,05 42,45 79,49 84,42 61,54 125,52 92,31 20,46 84,62 40,93 76,92 62,80

min-max (BDR): Chebyshev loss (median) 43,59 87,73 58,97 177,02 58,97 262,34 82,05 42,45 79,49 84,42 61,54 125,52 92,31 20,46 84,62 40,93 76,92 62,80

Notes: Time-simultenous (ΠTS) coverage level of 68% and 90% TS credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation forecast in United States using CCK18.
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Table D.4
CCK18: time-simultaneous coverage level (ΠTS) of TS error bands for euro area

Method 30% TS error band 60% TS error band 90% TS error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 46,15 146,03 43,59 267,14 56,41 381,51 61,54 55,32 79,49 105,20 82,05 155,41 97,44 21,92 100,00 43,50 97,44 68,16

Šidák 30,77 96,43 30,77 200,92 38,46 307,71 56,41 46,38 76,92 92,65 79,49 140,72 97,44 21,08 100,00 42,46 97,44 66,60

sup-t (PQO) 25,64 83,24 25,64 166,72 30,77 247,34 53,85 39,51 53,85 77,26 53,85 114,74 97,44 18,30 100,00 35,93 97,44 54,12

min-max: absolute loss (median) 41,03 153,96 79,49 370,35 87,18 513,74 79,49 94,99 100,00 203,17 97,44 254,94 100,00 66,71 100,00 106,73 97,44 124,65

min-max (LQO): absolute loss (median) 25,64 82,57 23,08 165,36 30,77 254,46 53,85 39,49 53,85 77,66 51,28 116,30 100,00 19,12 100,00 37,33 94,87 56,64

min-max (BDR): absolute loss (mean) 25,64 82,99 23,08 165,86 33,33 246,09 53,85 39,35 58,97 76,52 48,72 113,85 97,44 18,31 100,00 35,96 97,44 53,62

min-max: quadratic loss (mean) 30,77 104,68 35,90 236,90 51,28 374,39 58,97 55,98 87,18 123,57 92,31 190,95 100,00 33,29 100,00 69,16 97,44 99,72

min-max (LQO): quadratic loss (mean) 25,64 82,68 25,64 166,33 28,21 247,51 53,85 39,37 56,41 76,85 53,85 114,31 100,00 19,01 100,00 36,68 97,44 54,99

min-max (BDR): quadratic loss (median) 25,64 82,84 23,08 165,85 28,21 246,32 53,85 39,36 58,97 76,59 51,28 113,85 100,00 18,50 100,00 36,14 97,44 53,51

min-max: angular loss (median) 61,54 652,78 41,03 677,53 28,21 787,46 66,67 278,04 53,85 303,64 79,49 375,43 97,44 134,80 100,00 159,17 100,00 183,21

min-max (LQO): angular loss (median) 56,41 405,78 28,21 370,68 12,82 609,20 58,97 142,08 41,03 239,31 30,77 306,45 84,62 100,00 94,87 116,02 87,18 135,11

min-max (BDR): angular loss (median) 25,64 105,01 25,64 226,90 20,51 323,87 53,85 62,40 41,03 113,42 43,59 144,94 84,62 31,72 94,87 44,57 97,44 60,26

min-max: Chebyshev loss (median) 25,64 83,35 25,64 166,70 28,21 247,84 53,85 39,44 53,85 76,88 51,28 114,52 97,44 18,29 100,00 35,90 97,44 54,03

min-max (LQO): Chebyshev loss (median) 25,64 83,35 25,64 166,70 28,21 247,84 53,85 39,44 53,85 76,88 51,28 114,52 97,44 18,29 100,00 35,90 97,44 54,03

min-max (BDR): Chebyshev loss (median) 25,64 83,35 25,64 166,70 28,21 247,84 53,85 39,44 53,85 76,88 51,28 114,52 97,44 18,29 100,00 35,90 97,44 54,03

Notes: Time-simultenous (ΠTS) coverage level of 68% and 90% TS credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation forecast in the euro area using CCK18.
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Table D.5
DP15: various coverage levels of PW error bands for United States

Coverage level Variable 30% PW error band 60% PW error band 90% PW error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

ΠPW y1 33,33 30,77 30,77 69,23 74,36 66,67 94,87 92,31 84,62
y2 41,03 48,72 46,15 76,92 74,36 74,36 97,44 92,31 89,74

ΠMV - 10,26 17,95 15,38 51,28 56,41 56,41 92,31 87,18 79,49

ΠTS y1 7,69 2,56 0,00 48,72 28,21 17,95 92,31 84,62 64,10
y2 15,38 5,13 0,00 58,97 35,90 15,38 92,31 84,62 71,79

Notes: Pointwise (ΠPW ), multivariate (ΠMV ), and time-simultenous (ΠTS) coverage level of 68% and 90% PW credible
bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in United States using DP15.

Table D.6
DP15: various coverage levels of PW error bands for euro area

Coverage level Variable 30% PW error band 60% PW error band 90% PW error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

ΠPW y1 28,21 25,64 23,08 53,85 58,97 56,41 84,62 79,49 82,05
y2 33,33 48,72 43,59 66,67 89,74 87,18 100,00 94,87 89,74

ΠMV - 15,38 17,95 7,69 41,03 53,85 51,28 84,62 76,92 74,36

ΠTS y1 10,26 0,00 0,00 35,90 17,95 2,56 74,36 56,41 38,46
y2 10,26 0,00 0,00 48,72 43,59 35,90 94,87 89,74 79,49

Notes: Pointwise (ΠPW ), multivariate (ΠMV ), and time-simultenous (ΠTS) coverage level of 68% and 90% PW credible bands
for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in the euro area using DP15.
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Table D.7
DP15: time-simultaneous coverage level (ΠTS) of TS error bands for United States

Method Variable 30% TS error band 60% TS error band 90% TS error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni y1 56,41 155,54 74,36 300,36 64,10 478,17 74,36 61,76 84,62 125,42 69,23 202,71 97,44 26,52 89,74 57,01 87,18 95,93
y2 66,67 145,34 74,36 264,79 74,36 377,86 84,62 54,59 84,62 103,72 82,05 154,25 97,44 21,35 94,87 42,43 84,62 66,35

Šidák y1 66,67 145,34 74,36 264,79 74,36 377,86 84,62 54,59 84,62 103,72 82,05 154,25 97,44 21,35 94,87 42,43 84,62 66,35
y2 35,90 100,98 51,28 221,37 61,54 369,93 71,79 51,20 82,05 109,33 69,23 181,32 97,44 25,46 89,74 55,35 87,18 94,09

sup-t (PQO) y1 35,90 100,98 51,28 221,37 61,54 369,93 71,79 51,20 82,05 109,33 69,23 181,32 97,44 25,46 89,74 55,35 87,18 94,09
y2 48,72 95,86 58,97 198,18 61,54 305,32 82,05 45,94 79,49 91,67 79,49 139,51 97,44 20,60 94,87 41,29 84,62 64,51

min-max: absolute loss (median) y1 48,72 95,86 58,97 198,18 61,54 305,32 82,05 45,94 79,49 91,67 79,49 139,51 97,44 20,60 94,87 41,29 84,62 64,51
y2 33,33 83,62 43,59 166,87 38,46 255,61 66,67 41,30 79,49 83,77 64,10 131,12 97,44 21,19 89,74 44,31 82,05 72,13

min-max (LQO): absolute loss (median) y1 33,33 83,62 43,59 166,87 38,46 255,61 66,67 41,30 79,49 83,77 64,10 131,12 97,44 21,19 89,74 44,31 82,05 72,13
y2 46,15 88,31 56,41 178,73 56,41 269,55 79,49 42,12 79,49 83,34 79,49 123,84 94,87 19,05 94,87 37,89 84,62 57,56

min-max (BDR): absolute loss (mean) y1 46,15 88,31 56,41 178,73 56,41 269,55 79,49 42,12 79,49 83,34 79,49 123,84 94,87 19,05 94,87 37,89 84,62 57,56
y2 48,72 149,42 79,49 332,39 66,67 458,90 89,74 94,10 89,74 188,08 76,92 252,02 97,44 64,55 97,44 106,94 89,74 138,85

min-max: quadratic loss (mean) y1 48,72 149,42 79,49 332,39 66,67 458,90 89,74 94,10 89,74 188,08 76,92 252,02 97,44 64,55 97,44 106,94 89,74 138,85
y2 66,67 154,87 84,62 360,98 84,62 495,28 92,31 93,42 94,87 192,81 84,62 249,33 100,00 60,75 94,87 97,00 84,62 114,48

min-max (LQO): quadratic loss (mean) y1 66,67 154,87 84,62 360,98 84,62 495,28 92,31 93,42 94,87 192,81 84,62 249,33 100,00 60,75 94,87 97,00 84,62 114,48
y2 33,33 82,57 48,72 166,32 43,59 258,15 71,79 41,54 71,79 84,48 66,67 134,61 94,87 21,85 89,74 45,61 79,49 75,63

min-max (BDR): quadratic loss (median) y1 33,33 82,57 48,72 166,32 43,59 258,15 71,79 41,54 71,79 84,48 66,67 134,61 94,87 21,85 89,74 45,61 79,49 75,63
y2 48,72 87,62 51,28 179,32 56,41 275,40 76,92 41,95 79,49 83,72 76,92 128,25 97,44 19,57 94,87 39,27 84,62 61,64

min-max: angular loss (median) y1 48,72 87,62 51,28 179,32 56,41 275,40 76,92 41,95 79,49 83,72 76,92 128,25 97,44 19,57 94,87 39,27 84,62 61,64
y2 33,33 82,53 48,72 164,73 41,03 251,72 69,23 40,91 79,49 83,24 66,67 129,39 94,87 20,82 89,74 43,97 84,62 70,67

min-max (LQO): angular loss (median) y1 33,33 82,53 48,72 164,73 41,03 251,72 69,23 40,91 79,49 83,24 66,67 129,39 94,87 20,82 89,74 43,97 84,62 70,67
y2 48,72 87,54 53,85 177,19 56,41 266,36 79,49 41,65 79,49 82,39 76,92 122,65 97,44 18,92 94,87 37,40 84,62 56,82

min-max (BDR): angular loss (median) y1 48,72 87,54 53,85 177,19 56,41 266,36 79,49 41,65 79,49 82,39 76,92 122,65 97,44 18,92 94,87 37,40 84,62 56,82
y2 35,90 103,76 56,41 228,38 64,10 351,47 74,36 56,67 87,18 125,31 69,23 191,30 97,44 34,96 92,31 71,93 87,18 105,89

min-max: Chebyshev loss (median) y1 35,90 103,76 56,41 228,38 64,10 351,47 74,36 56,67 87,18 125,31 69,23 191,30 97,44 34,96 92,31 71,93 87,18 105,89
y2 53,85 108,99 69,23 246,32 71,79 377,35 84,62 57,45 89,74 124,68 84,62 187,87 100,00 31,45 94,87 64,29 84,62 92,01

min-max (LQO): Chebyshev loss (median) y1 53,85 108,99 69,23 246,32 71,79 377,35 84,62 57,45 89,74 124,68 84,62 187,87 100,00 31,45 94,87 64,29 84,62 92,01
y2 30,77 82,80 46,15 166,15 43,59 253,66 71,79 41,15 79,49 83,32 66,67 130,48 94,87 21,39 89,74 44,57 82,05 73,92

min-max (BDR): Chebyshev loss (median) y1 30,77 82,80 46,15 166,15 43,59 253,66 71,79 41,15 79,49 83,32 66,67 130,48 94,87 21,39 89,74 44,57 82,05 73,92
y2 51,28 87,66 53,85 177,88 58,97 268,78 79,49 42,07 79,49 83,07 74,36 124,10 97,44 19,27 94,87 37,94 84,62 58,05

Notes: Time-simultenous (ΠTS) coverage level of 68% and 90% TS credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in United States using DP15.
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Table D.8
DP15: time-simultaneous coverage level (ΠTS) of TS error bands for euro area

Method Variable 30% TS error band 60% TS error band 90% TS error band

h = 2 h = 4 h = 8 h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni y1 41,03 144,90 43,59 260,79 48,72 363,98 53,85 53,80 56,41 100,12 56,41 144,38 84,62 20,75 87,18 40,37 97,44 59,84
y2 51,28 147,72 82,05 267,46 79,49 375,11 87,18 55,60 89,74 104,40 82,05 153,08 97,44 22,16 92,31 43,29 84,62 67,25

Šidák y1 51,28 147,72 82,05 267,46 79,49 375,11 87,18 55,60 89,74 104,40 82,05 153,08 97,44 22,16 92,31 43,29 84,62 67,25
y2 33,33 96,43 30,77 197,48 33,33 297,31 51,28 45,54 51,28 88,78 53,85 131,44 84,62 20,04 87,18 39,09 94,87 58,92

sup-t (PQO) y1 33,33 96,43 30,77 197,48 33,33 297,31 51,28 45,54 51,28 88,78 53,85 131,44 84,62 20,04 87,18 39,09 94,87 58,92
y2 41,03 98,51 64,10 200,65 76,92 304,13 82,05 46,58 89,74 91,94 82,05 139,18 97,44 21,19 92,31 42,09 84,62 66,03

min-max: absolute loss (median) y1 41,03 98,51 64,10 200,65 76,92 304,13 82,05 46,58 89,74 91,94 82,05 139,18 97,44 21,19 92,31 42,09 84,62 66,03
y2 33,33 90,31 30,77 178,52 25,64 263,82 51,28 42,53 46,15 80,65 46,15 117,51 84,62 18,92 84,62 35,88 92,31 53,41

min-max (LQO): absolute loss (median) y1 33,33 90,31 30,77 178,52 25,64 263,82 51,28 42,53 46,15 80,65 46,15 117,51 84,62 18,92 84,62 35,88 92,31 53,41
y2 33,33 82,25 48,72 163,07 64,10 240,99 71,79 39,09 87,18 75,51 79,49 110,99 97,44 18,29 92,31 34,54 82,05 52,29

min-max (BDR): absolute loss (mean) y1 33,33 82,25 48,72 163,07 64,10 240,99 71,79 39,09 87,18 75,51 79,49 110,99 97,44 18,29 92,31 34,54 82,05 52,29
y2 43,59 160,65 58,97 366,07 66,67 482,56 71,79 93,98 84,62 185,42 92,31 234,51 100,00 59,18 100,00 91,82 100,00 106,94

min-max: quadratic loss (mean) y1 43,59 160,65 58,97 366,07 66,67 482,56 71,79 93,98 84,62 185,42 92,31 234,51 100,00 59,18 100,00 91,82 100,00 106,94
y2 51,28 146,70 89,74 321,75 82,05 419,08 94,87 91,62 92,31 172,42 84,62 209,86 100,00 60,17 94,87 87,13 84,62 98,04

min-max (LQO): quadratic loss (mean) y1 51,28 146,70 89,74 321,75 82,05 419,08 94,87 91,62 92,31 172,42 84,62 209,86 100,00 60,17 94,87 87,13 84,62 98,04
y2 33,33 90,88 28,21 178,60 28,21 270,80 51,28 42,44 43,59 81,73 43,59 122,06 84,62 19,41 84,62 37,67 87,18 56,77

min-max (BDR): quadratic loss (median) y1 33,33 90,88 28,21 178,60 28,21 270,80 51,28 42,44 43,59 81,73 43,59 122,06 84,62 19,41 84,62 37,67 87,18 56,77
y2 38,46 81,58 56,41 162,52 74,36 240,22 71,79 39,09 92,31 78,92 82,05 114,18 97,44 18,52 94,87 38,42 84,62 56,04

min-max: angular loss (median) y1 38,46 81,58 56,41 162,52 74,36 240,22 71,79 39,09 92,31 78,92 82,05 114,18 97,44 18,52 94,87 38,42 84,62 56,04
y2 30,77 89,79 28,21 176,80 25,64 261,49 51,28 42,19 48,72 79,70 46,15 116,91 84,62 18,59 87,18 35,63 89,74 52,66

min-max (LQO): angular loss (median) y1 30,77 89,79 28,21 176,80 25,64 261,49 51,28 42,19 48,72 79,70 46,15 116,91 84,62 18,59 87,18 35,63 89,74 52,66
y2 38,46 81,57 51,28 160,23 74,36 233,94 71,79 38,41 87,18 74,40 82,05 109,01 97,44 17,84 94,87 35,00 84,62 50,07

min-max (BDR): angular loss (median) y1 38,46 81,57 51,28 160,23 74,36 233,94 71,79 38,41 87,18 74,40 82,05 109,01 97,44 17,84 94,87 35,00 84,62 50,07
y2 33,33 111,99 38,46 245,10 46,15 371,88 53,85 57,96 64,10 121,47 79,49 180,02 89,74 30,89 97,44 62,10 100,00 86,12

min-max: Chebyshev loss (median) y1 33,33 111,99 38,46 245,10 46,15 371,88 53,85 57,96 64,10 121,47 79,49 180,02 89,74 30,89 97,44 62,10 100,00 86,12
y2 43,59 102,16 82,05 222,97 79,49 334,61 79,49 54,97 92,31 115,77 84,62 168,24 97,44 33,34 94,87 62,22 84,62 81,39

min-max (LQO): Chebyshev loss (median) y1 43,59 102,16 82,05 222,97 79,49 334,61 79,49 54,97 92,31 115,77 84,62 168,24 97,44 33,34 94,87 62,22 84,62 81,39
y2 30,77 89,43 28,21 178,71 25,64 263,86 51,28 41,91 46,15 80,09 46,15 118,46 82,05 18,77 84,62 36,99 84,62 54,57

min-max (BDR): Chebyshev loss (median) y1 30,77 89,43 28,21 178,71 25,64 263,86 51,28 41,91 46,15 80,09 46,15 118,46 82,05 18,77 84,62 36,99 84,62 54,57
y2 38,46 81,79 58,97 161,10 74,36 238,14 74,36 39,02 89,74 76,42 82,05 112,03 97,44 18,87 94,87 37,72 84,62 54,66

Notes: Time-simultenous (ΠTS) coverage level of 68% and 90% TS credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in the euro area using DP15.
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Table D.9
DP15: multivariate coverage level (ΠMV) of MV error bands for United States

Method 30% TS error band 60% TS error band 90% TS error band

h=1:2 h=1:4 h=1:8 h=1:2 h=1:4 h=1:8 h=1:2 h=1:4 h=1:8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 61,54 151,23 64,10 152,88 64,10 155,49 82,05 58,31 82,05 59,44 74,36 61,30 97,44 24,01 92,31 24,84 84,62 26,00

Šidák 43,59 99,01 46,15 99,98 43,59 101,60 79,49 48,79 74,36 49,69 74,36 51,16 97,44 23,12 92,31 23,99 84,62 25,13

sup-t (PQO) 43,59 93,83 46,15 93,49 43,59 93,75 79,49 45,72 74,36 46,27 71,79 46,93 97,44 21,93 92,31 22,45 84,62 23,52

min-max: absolute loss (median) 61,54 157,21 64,10 157,21 53,85 157,74 89,74 96,70 87,18 97,39 79,49 98,17 100,00 61,93 94,87 61,77 89,74 62,74

min-max (LQO): absolute loss (median) 51,28 89,52 51,28 90,40 46,15 91,39 76,92 48,67 74,36 48,74 76,92 49,83 94,87 28,12 92,31 27,89 87,18 28,27

min-max (BDR): absolute loss (mean) 48,72 91,26 51,28 91,21 46,15 92,14 79,49 46,95 76,92 47,24 74,36 47,94 94,87 23,33 92,31 23,61 84,62 24,20

min-max: quadratic loss (mean) 58,97 110,48 53,85 110,42 48,72 110,99 84,62 62,42 79,49 62,63 76,92 63,73 97,44 37,42 94,87 37,31 89,74 37,74

min-max (LQO): quadratic loss (mean) 51,28 89,85 51,28 90,29 46,15 90,76 76,92 48,53 74,36 48,61 76,92 49,52 97,44 29,38 92,31 28,62 89,74 28,61

min-max (BDR): quadratic loss (median) 51,28 90,23 51,28 90,18 46,15 91,24 76,92 47,79 74,36 48,11 76,92 48,74 94,87 26,35 92,31 26,10 87,18 26,28

min-max: angular loss (median) 100,00 1142,00 94,87 1241,78 92,31 1364,39 100,00 521,43 94,87 558,19 94,87 621,17 100,00 218,71 97,44 223,34 94,87 249,88

min-max (LQO): angular loss (median) 94,87 599,16 92,31 597,71 84,62 611,16 94,87 210,42 92,31 207,47 84,62 213,48 94,87 50,81 92,31 48,61 84,62 49,52

min-max (BDR): angular loss (median) 43,59 93,16 43,59 92,60 43,59 93,13 82,05 45,58 74,36 46,12 71,79 46,61 94,87 21,75 92,31 22,11 84,62 23,31

min-max: Chebyshev loss (median) 46,15 93,64 46,15 93,25 46,15 93,74 79,49 45,89 76,92 46,39 74,36 47,36 97,44 21,49 92,31 22,04 84,62 23,12

min-max (LQO): Chebyshev loss (median) 46,15 93,64 46,15 93,25 46,15 93,74 79,49 45,89 76,92 46,39 74,36 47,36 97,44 21,49 92,31 22,04 84,62 23,12

min-max (BDR): Chebyshev loss (median) 46,15 93,64 46,15 93,25 46,15 93,74 79,49 45,89 76,92 46,39 74,36 47,36 97,44 21,49 92,31 22,04 84,62 23,12

Notes: Multivariate (ΠMV ) coverage level of 68% and 90% MV credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in United States using DP15.
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Table D.10
DP15: multivariate coverage level (ΠMV) of MV error bands for euro area

Method 30% TS error band 60% TS error band 90% TS error band

h=1:2 h=1:4 h=1:8 h=1:2 h=1:4 h=1:8 h=1:2 h=1:4 h=1:8

Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆ Π ∆

Bonferroni 48,72 147,32 58,97 146,10 53,85 147,08 66,67 54,91 71,79 54,88 64,10 55,44 89,74 21,30 87,18 21,57 82,05 22,20

Šidák 33,33 97,34 51,28 97,29 41,03 97,48 61,54 46,34 69,23 46,22 56,41 46,54 89,74 20,58 87,18 20,85 82,05 21,34

sup-t (PQO) 33,33 92,49 46,15 92,63 38,46 91,40 58,97 44,06 69,23 43,88 56,41 43,63 89,74 19,79 84,62 19,85 82,05 20,01

min-max: absolute loss (median) 53,85 151,73 66,67 150,88 56,41 149,08 84,62 93,02 92,31 92,15 89,74 92,32 100,00 58,15 94,87 57,21 89,74 56,29

min-max (LQO): absolute loss (median) 33,33 86,97 38,46 85,45 28,21 83,95 64,10 45,08 79,49 45,92 82,05 46,55 100,00 28,61 94,87 30,64 89,74 32,44

min-max (BDR): absolute loss (mean) 35,90 87,33 38,46 87,19 33,33 85,85 64,10 43,89 69,23 44,09 71,79 44,15 97,44 20,81 92,31 21,82 89,74 22,10

min-max: quadratic loss (mean) 43,59 106,96 53,85 105,63 38,46 103,69 69,23 58,92 84,62 59,41 82,05 59,70 100,00 37,25 94,87 38,28 89,74 39,85

min-max (LQO): quadratic loss (mean) 30,77 87,03 38,46 85,61 28,21 83,57 64,10 45,16 79,49 45,95 82,05 46,79 100,00 30,28 94,87 32,49 89,74 34,65

min-max (BDR): quadratic loss (median) 33,33 86,61 38,46 86,14 28,21 84,15 64,10 44,56 74,36 44,94 76,92 45,54 100,00 24,98 94,87 25,85 89,74 27,42

min-max: angular loss (median) 100,00 917,05 97,44 913,63 92,31 999,70 100,00 434,76 97,44 481,09 92,31 547,61 100,00 177,54 97,44 201,37 92,31 248,71

min-max (LQO): angular loss (median) 94,87 537,70 82,05 521,81 87,18 535,36 94,87 188,71 82,05 182,92 87,18 187,21 94,87 44,77 82,05 43,73 87,18 44,66

min-max (BDR): angular loss (median) 28,21 91,71 43,59 91,43 41,03 90,53 61,54 43,76 69,23 43,25 56,41 43,22 89,74 19,54 84,62 19,62 82,05 19,87

min-max: Chebyshev loss (median) 35,90 91,82 51,28 91,73 38,46 91,00 64,10 43,88 69,23 43,61 56,41 43,18 89,74 19,98 84,62 19,75 82,05 19,92

min-max (LQO): Chebyshev loss (median) 35,90 91,82 51,28 91,73 38,46 91,00 64,10 43,88 69,23 43,61 56,41 43,18 89,74 19,98 84,62 19,75 82,05 19,92

min-max (BDR): Chebyshev loss (median) 35,90 91,82 51,28 91,73 38,46 91,00 64,10 43,88 69,23 43,61 56,41 43,18 89,74 19,98 84,62 19,75 82,05 19,92

Notes: Multivariate (ΠMV ) coverage level of 68% and 90% MV credible bands for 2, 4, and 8 quarters ahead out-of-sample headline inflation and real GDP forecast in the euro area using DP15.
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